Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Behav Pharmacol ; 35(2-3): 114-121, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451023

RESUMO

We hypothesized that opioid receptor antagonists would inhibit motivated behavior produced by a natural reward. To evaluate motivated responses to a natural reward, mice were given access to running wheels for 71.5 h in a multi-configuration testing apparatus. In addition to a running wheel activity, locomotor activity (outside of the wheel), food and water intake, and access to a food container were measured in the apparatus. Mice were also tested separately for novel-object exploration to investigate whether naloxone affects behavior unrelated to natural reward. In untreated mice wheel running increased from day 1 to day 3. The selective µ-opioid receptor antagonist ß-funaltrexamine (ß-FNA) (5 mg/kg) slightly decreased wheel running, but did not affect the increase in wheel running from day 1 to day 3. The non-selective opioid receptor antagonist naloxone produced a greater reduction in wheel running than ß-FNA and eliminated the increase in wheel running that occurred over time in the other groups. Analysis of food access, locomotor behavior, and behavior in the novel-object test suggested that the reduction in wheel running was selective for this highly reinforcing behavior. These results indicate that opioid receptor antagonism reduces responses to the natural rewarding effects of wheel running and that these effects involve multiple opioid receptors since the non-selective opioid receptor antagonist had greater effects than the selective µ-opioid receptor antagonist. It is possible that at the doses employed, other receptor systems than opioid receptors might be involved, at least in part, in the effect of naloxone and ß-FNA.


Assuntos
Atividade Motora , Antagonistas de Entorpecentes , Animais , Camundongos , Antagonistas de Entorpecentes/farmacologia , Motivação , Naloxona/farmacologia , Receptores Opioides
2.
Alcohol Alcohol ; 59(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38145944

RESUMO

BACKGROUND: Alcohol is a major abused drug worldwide that contributes substantially to health and social problems. These problems result from acute alcohol overuse as well as chronic use, leading to alcohol use disorder (AUD). A major goal of this field is to establish a treatment for alcohol abuse and dependence in patients with AUD. The central molecular mechanisms of acute alcohol actions have been extensively investigated in rodent models. AIMS: One of the central mechanisms that may be involved is glycogen synthase kinase-3ß (GSK-3ß) activity, a key enzyme involved in glycogen metabolism but which has crucial roles in numerous cellular processes. Although the exact mechanisms leading from acute alcohol actions to these chronic changes in GSK-3ß function are not yet clear, GSK-3ß nonetheless constitutes a potential therapeutic target for AUD by reducing its function using GSK-3ß inhibitors. This review is focused on the correlation between GSK-3ß activity and the degree of alcohol consumption. METHODS: Research articles regarding investigation of effect of GSK-3ß on alcohol consumption in rodents were searched on PubMed, Embase, and Scopus databases using keywords "glycogen synthase kinase," "alcohol (or ethanol)," "intake (or consumption)," and evaluated by changes in ratios of pGSK-3ßSer9/pGSK-3ß. RESULTS: In animal experiments, GSK-3ß activity decreases in the brain under forced and voluntary alcohol consumption while GSK-3ß activity increases under alcohol-seeking behavior. CONCLUSIONS: Several pieces of evidence suggest that alterations in GSK-3ß function are important mediators of chronic ethanol actions, including those related to alcohol dependence and the adverse effects of chronic ethanol exposure.


Assuntos
Encéfalo , Etanol , Animais , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Etanol/efeitos adversos , Encéfalo/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Fosforilação
3.
Behav Pharmacol ; 34(7): 393-403, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37668157

RESUMO

The psychostimulant drug methamphetamine (METH) causes euphoria in humans and locomotor hyperactivity in rodents by acting on the mesolimbic dopamine (DA) pathway and has severe abuse and addiction liability. Behavioral sensitization, an increased behavioral response to a drug with repeated administration, can persist for many months after the last administration. Research has shown that the serotonin 1B (5-HT1B) receptor plays a critical role in the development and maintenance of drug addiction, as well as other addictive behaviors. This study examined the role of 5-HT1B receptors in METH-induced locomotor sensitization using 5-HT1B knockout (KO) mice. To clarify the action of METH in 5-HT1B KO mice the effects of METH on extracellular levels of DA (DAec) and 5-HT (5-HTec) in the caudate putamen (CPu) and the nucleus accumbens (NAc) were examined. Locomotor sensitization and extracellular monoamine levels were determined in wild-type mice (5-HT1B +/+), heterozygous 5-HT1B receptor KO (5-HT1B +/-) mice and homozygous 5-HT1B receptor KO mice (5-HT1B -/-). Behavioral sensitization to METH was enhanced in 5-HT1B -/- mice compared to 5-HT1B +/+ mice but was attenuated in 5-HT1B +/- mice compared to 5-HT1B +/+ and 5-HT1B -/- mice. In vivo, microdialysis demonstrated that acute administration of METH increases DAec levels in the CPu and NAc of 5-HT1B KO mice compared to saline groups. In 5-HT1B +/- mice, METH increased 5-HTec levels in the CPu, and DAec levels in the NAc were higher than in others.5-HT1B receptors play an important role in regulating METH-induced behavioral sensitization.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Humanos , Animais , Camundongos , Técnicas de Inativação de Genes , Metanfetamina/farmacologia , Receptor 5-HT1B de Serotonina/genética , Camundongos Knockout , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina , Serotonina
4.
Front Psychiatry ; 14: 1031283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139308

RESUMO

Substance use disorders provide challenges for development of effective medications. Use of abused substances is likely initiated, sustained and "quit" by complex brain and pharmacological mechanisms that have both genetic and environmental determinants. Medical utilities of prescribed stimulants and opioids provide complex challenges for prevention: how can we minimize their contribution to substance use disorders while retaining medical benefits for pain, restless leg syndrome, attention deficit hyperactivity disorder, narcolepsy and other indications. Data required to support assessments of reduced abuse liability and resulting regulatory scheduling differs from information required to support licensing of novel prophylactic or therapeutic anti-addiction medications, adding further complexity and challenges. I describe some of these challenges in the context of our current efforts to develop pentilludin as a novel anti-addiction therapeutic for a target that is strongly supported by human and mouse genetic and pharmacologic studies, the receptor type protein tyrosine phosphatase D (PTPRD).

5.
Neurochem Res ; 48(7): 2230-2240, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36907972

RESUMO

We investigated morphine-induced Straub's tail reaction (STR) in mice pretreated with or without glycogen synthase kinase-3 (GSK-3) inhibitors (SB216763 and AR-A014418) by using a newly modified, infrared beam sensor-based automated apparatus. Mice treated with a single injection of morphine (30 mg/kg, i.p.) showed a significant STR with a plateau level at a time point of 20 min after morphine challenge. Pretreatment of mice with SB216763 (5 mg/kg, s.c.) or AR-A014418 (3 mg/kg, i.p.) significantly inhibited morphine-induced STR and attenuated the duration of STR in a dose-dependent fashion. In the striatum and the nucleus accumbens, expression of pGSK-3ßTyr216 but not GSK3ß or pGSK-3ßSer9 was largely but not significantly reduced after treatment with SB216763 (5 mg/kg, s.c.) in combination with/without morphine, indicating that the inhibitory effect of GSK-3 inhibitors on morphine-induced STR and hyperlocomotion might not depend on the direct blockade of GSK-3ß function. In constipated mice after morphine challenge (30 mg/kg), the effect of GSK-3 inhibitors on gastrointestinal transit was examined to reveal whether the action of GSK-3 inhibitors on morphine effects was central and/or peripheral. Pretreatment with SB216763 (5 mg/kg) did not block constipation in morphine-injected mice. The mechanism of action seems to be central but not peripheral, although the underlying subcellular mechanism of GSK-3 inhibitors is not clear. Our measurement system is a useful tool for investigating the excitatory effects of morphine in experimental animals.


Assuntos
Quinase 3 da Glicogênio Sintase , Morfina , Camundongos , Animais , Morfina/farmacologia , Morfina/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Cauda
6.
J Pharmacol Sci ; 151(3): 135-141, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36828615

RESUMO

Previous pharmacological data have shown the possible existence of functional interactions between µ- (MOP), κ- (KOP), and δ-opioid receptors (DOP) in pain and mood disorders. We previously reported that MOP knockout (KO) mice exhibit a lower stress response compared with wildtype (WT) mice. Moreover, DOP agonists have been shown to exert antidepressant-like effects in numerous animal models. In the present study, the tail suspension test (TST) and forced swim test (FST) were used to examine the roles of MOP and DOP in behavioral despair. MOP-KO mice and WT mice were treated with KNT-127 (10 mg/kg), a selective DOP agonist. The results indicated a significant decrease in immobility time in the KNT-127 group compared with the saline group in all genotypes in both tests. In the saline groups, immobility time significantly decreased in MOP-KO mice compared with WT mice in both tests. In female MOP-KO mice, KNT-127 significantly decreased immobility time in the TST compared with WT mice. In male MOP-KO mice, however, no genotypic differences were found in the TST after either KNT-127 or saline treatment. Thus, at least in the FST and TST, the activation of DOP and absence of MOP had additive effects in reducing measures of behavioral despair, suggesting that effects on this behavior by DOP activation occur independently of MOP.


Assuntos
Morfinanos , Receptores Opioides mu , Masculino , Feminino , Camundongos , Animais , Morfinanos/farmacologia , Antidepressivos/farmacologia , Analgésicos Opioides/farmacologia , Dor/tratamento farmacológico
7.
Biochem Pharmacol ; 202: 115109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636503

RESUMO

The receptor type protein tyrosine phosphatase D (PTPRD) is expressed by neurons and implicated in interesting phenotypes that include reward from addictive substances, restless leg syndrome and neurofibrillary tangle densities in Alzheimer's disease (AD-NFTs). However, the brain phosphotyrosine phosphoprotein (PTPP) substrates for PTPRD's phosphatase have not been clearly defined. Although we have identified small molecule inhibitors of PTPRD's phosphatase that are candidates for reducing reward from addictive substances, no positive allosteric modulators of this phosphatase that might be candidates for reducing AD-NFTs have been reported. We now report identification of candidate brain substrates for PTPRD based on their increased phosphorylation in knockout vs wildtype animals, coexpression with PTPRD in neuronal subtypes and brisk dephosphorylation by recombinant human PTPRD phosphatase. We also report discovery that quercetin and other flavonols, though not closely-related flavones, enhance rates of PTPRD's dephosphorylation of a group of these candidate substrate PTPPs but not others. This substrate-selective positive allosteric modulation provides a novel pharmacological action. Flavonol-mediated increases in PTPRD's dephosphorylation of the GSK3 ß and α kinases that hyperphosphorylate tau, the major component of AD-NFTs, could help to explain recent data concerning genetic and dietary impacts on Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Flavonóis , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas tau/metabolismo
8.
Curr Drug Res Rev ; 14(3): 162-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431009

RESUMO

BACKGROUND: Methamphetamine (METH) is classified as a Schedule II stimulant drug under the United Nations Convention on Psychotropic Substances of 1971. METH and other amphetamine analogues (AMPHs) are powerful addictive drugs. Treatments are needed to treat the symptoms of METH addiction, chronic METH use, and acute METH overdose. No effective treatment for METH abuse has been established because alterations of brain functions under the excessive intake of abused drug intake are largely irreversible due in part to brain damage that occurs in the course of chronic METH use. OBJECTIVE: Modulation of brain histamine neurotransmission is involved in several neuropsychiatric disorders, including substance use disorders. This review discusses the possible mechanisms underlying the therapeutic effects of histamine H3 receptor antagonists on symptoms of methamphetamine abuse. CONCLUSION: Treatment of mice with centrally acting histamine H3 receptor antagonists increases hypothalamic histamine contents and reduces high-dose METH effects while potentiating lowdose effects via histamine H3 receptors that bind released histamine. On the basis of experimental evidence, it is hypothesized that histamine H3 receptors may be an effective target for the treatment METH use disorder or other adverse effects of chronic METH use.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Estimulantes do Sistema Nervoso Central , Metanfetamina , Animais , Camundongos , Estimulantes do Sistema Nervoso Central/farmacologia , Histamina , Metanfetamina/farmacologia , Receptores Histamínicos , Antagonistas dos Receptores Histamínicos H3
9.
Biochem Pharmacol ; 195: 114868, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863978

RESUMO

Interest in development of potent, selective inhibitors of the phosphatase from the receptor type protein tyrosine phosphatase PTPRD as antiaddiction agents is supported by human genetics, mouse models and studies of our lead compound PTPRD phosphatase inhibitor, 7-butoxy illudalic acid analog 1 (7-BIA). We now report structure-activity relationships for almost 70 7-BIA-related compounds and results that nominate a 7- cyclopentyl methoxy analog as a candidate for further development. While efforts to design 7-BIA analogs with substitutions for other parts failed to yield potent inhibitors of PTPRD's phosphatase, ten 7-position substituted analogs displayed greater potency at PTPRD than 7-BIA. Several were more selective for PTPRD vs the receptor type protein tyrosine phosphatases S, F and J or the nonreceptor type protein tyrosine phosphatase N1 (PTPRS, PTPRF, PTPRJ or PTPN1/PTP1B), phosphatases at which 7-BIA displays activity. In silico studies aided design of novel analogs. A 7-position cyclopentyl methoxy substituted 7-BIA analog termed NHB1109 displayed 600-700 nM potencies in inhibiting PTPRD and PTPRS, improved selectivity vs PTPRS, PTPRF, PTPRJ or PTPN1/PTP1B phosphatases, no substantial potency at other protein tyrosine phosphatases screened, no significant potency at any of the targets of clinically-useful drugs identified in EUROFINS screens and significant oral bioavailability. Oral doses up to 200 mg/kg were well tolerated by mice, though higher doses resulted in reduced weight and apparent ileus without clear organ histopathology. NHB1109 provides a good candidate to advance to in vivo studies in addiction paradigms and toward human use to reduce reward from addictive substances.


Assuntos
Cumarínicos/farmacologia , Desenvolvimento de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Animais , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Cumarínicos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Químicos , Estrutura Molecular , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/antagonistas & inibidores , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Relação Estrutura-Atividade
10.
Pharmacol Biochem Behav ; 209: 173257, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418452

RESUMO

Metoprine increases the content of histamine in brain by inhibiting histamine N-methyltransferase (HMT), a centrally acting histamine degrading enzyme. We present data demonstrating that pretreatment with metoprine attenuates the hyperlocomotive effects of METH in mice using a multi-configuration behavior apparatus designed to monitor four behavioral outcomes [horizontal locomotion, appetitive behavior (food access), and food and water intake]. Metoprine pretreatment itself induced hyperlocomotion in mice challenged with saline during the large part of light phase. The trend was also observed during the following dark phase. This is the first report that metoprine has a long-lasting locomotor stimulating property. Similarly, in a tail suspension test, a single injection of metoprine significantly reduced total time of immobility in mice, consistent with the idea that metoprine possesses motor stimulating properties. Metoprine pretreatment did not affect other aspects of behavior. Metoprine did not affect the appetitive and drinking behavior while exerted an effect on stereotypy. No stereotyped behavior was observed in mice pretreated with vehicle followed by METH, while stereotyped sniffing was observed in mice pretreated with metoprine followed by METH. The metoprine pretreatment attenuated METH-induced hyperlocomotion during the first 2 h of light phase, suggesting that metoprine-induced locomotor stimulating property might be different from that of METH. The hypothalamic content of histamine (but not its brain metabolite) was increased after metoprine or METH administration. Both METH and metoprine reduced dopamine and histamine turnover in the striatum and the nucleus accumbens and the hypothalamus, respectively, and there is a significant metoprine pretreatment x METH challenge interaction in the histamine turnover. It is likely that metoprine may attenuate METH-induced hyperlocomotion via activation of histaminergic neurotransmission. Metoprine also might induce a long-lasting locomotor stimulating effect via a putative mechanism different from that whereby METH induces the locomotor stimulating effect.


Assuntos
Histamina/metabolismo , Locomoção/efeitos dos fármacos , Metanfetamina/farmacologia , Pirimetamina/análogos & derivados , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Inibidores Enzimáticos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Histamina N-Metiltransferase/antagonistas & inibidores , Hipotálamo/metabolismo , Masculino , Metanfetamina/efeitos adversos , Camundongos , Camundongos Endogâmicos ICR , Núcleo Accumbens/metabolismo , Pirimetamina/farmacologia , Comportamento Estereotipado/efeitos dos fármacos
11.
Neuropsychopharmacol Rep ; 41(1): 91-101, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547882

RESUMO

AIMS: 5-Methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) is a synthetic orally active hallucinogenic tryptamine analogue. The present study examined whether the effects of 5-MeO-DIPT involve the serotonin transporter (SERT) and serotonin 5-hydroxytryptamine-1A (5-HT1A ) receptor in the striatum and prefrontal cortex (PFC). METHODS: We investigated the effects of 5-MeO-DIPT on extracellular 5-HT (5-HTex ) and dopamine (DAex ) levels in the striatum and PFC in wildtype and SERT knockout (KO) mice using in vivo microdialysis, and for comparison the effects of the 5-HT1A receptor antagonist WAY100635 and the 5-HT1A receptor agonist 8-OH-DPAT on 5-HTex . RESULTS: 5-MeO-DIPT decreased 5-HTex levels in the striatum, but not PFC. In SERT-KO mice, 5-MeO-DIPT did not affect 5-HTex levels in the striatum or PFC. In the presence of WAY100635, 5-MeO-DIPT substantially increased 5-HTex levels, suggesting that 5-MeO-DIPT acts on SERT and these effects are masked by its 5-HT1A actions in the absence of WAY100635. 8-OH-DPAT decreased 5-HTex levels in the striatum and PFC in wildtype mice. WAY100635 antagonized the 8-OH-DPAT-induced decrease in 5-HTex levels. In SERT-KO mice, 8-OH-DPAT did not decrease 5-HTex levels in the striatum and PFC. 5-MeO-DIPT dose-dependently increased DAex levels in the PFC, but not striatum, in wildtype and SERT-KO mice. The increase in DAex levels that was induced by 5-MeO-DIPT was not antagonized by WAY100635. CONCLUSION: 5-MeO-DIPT influences both 5-HTex and DAex levels in the striatum and PFC. 5-MeO-DIPT dually acts on SERT and 5-HT1A receptors so that elevations in 5-HTex levels produced by reuptake inhibition are limited by actions of the drug on 5-HT1A receptors.


Assuntos
5-Metoxitriptamina/análogos & derivados , Corpo Estriado/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , 5-Metoxitriptamina/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Corpo Estriado/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Microdiálise , Piperazinas/farmacologia , Córtex Pré-Frontal/metabolismo , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
12.
Neurosci Lett ; 738: 135378, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920046

RESUMO

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has been linked to multiple aspects of cognition. For example, in rodents, discrimination and reversal learning are altered by experimentally induced changes in brain serotonin levels, and reduced expression of the 5-HT2B receptor subtype in mice and humans is associated with decreased serotonergic tone and increased behavioral impulsivity. Serotonin modulates cognitive flexibility as well as fear and anxiety, but the specific contributions of 5-HT2B receptors to these behaviors is unknown. The current study assessed mice with partial Htr2b deletion for performance on a touchscreen-based pairwise visual discrimination and reversal learning task followed by a test of cued fear learning. Male Htr2b heterozygous mice (+/-) and littermate controls (+/+) were trained to discriminate between two visual stimuli presented on a touch-sensitive screen, one which predicted delivery of a 14-mg food pellet and the other which was not rewarded. Once discrimination performance criterion was attained, the stimulus-reward contingencies were reversed. Htr2b +/- mice were faster to reach discrimination criterion than +/+ controls, and made fewer errors. Htr2b +/- mice were also slower to make responses and collect rewards. Conversely, measures of reversal learning were not different between genotypes. Pavlovian cued fear conditioning was also normal in Htr2b +/-mice. These data demonstrate a selective improvement in touchscreen-based discrimination learning in mice with partial deletion of the 5-HT2B receptor, and provide further insight into the role of the 5-HT2B receptor in cognition.


Assuntos
Aprendizagem por Discriminação/fisiologia , Deleção de Genes , Receptor 5-HT2B de Serotonina/genética , Reversão de Aprendizagem , Percepção Visual/genética , Animais , Cognição/fisiologia , Condicionamento Operante/fisiologia , Discriminação Psicológica/fisiologia , Masculino , Camundongos
13.
Brain Res ; 1740: 146873, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387137

RESUMO

A single administration with METH (3 mg/kg) induced a hyperlocomotion in male ICR mice. Pretreatment of mice with pitolisant, a histamine H3 receptor antagonist (5 and 10 mg/kg), for 30 min showed a significant reduction of the hyperlocomotion induced by METH, as compared with vehicle (saline)-pretreated subjects. Pretreatment of mice with the histamine H3 receptor antagonists JNJ-10181457 (5 and 10 mg/kg) or conessine (20 mg/kg), also showed similar inhibitory effects on METH-induced hyperlocomotion, similar to pitolisant. No significant change in locomotion was observed in mice pretreated with pitolisant, JNJ-10181457, or conessine alone. The pitolisant (10 mg/kg) action on METH-induced hyperlocomotion was completely abolished by the histamine H1 receptor antagonist pyrilamine (10 mg/kg), but not by the peripherally acting histamine H1 receptor antagonist fexofenadine (20 mg/kg), the brain-penetrating histamine H2 receptor antagonist zolantidine (10 mg/kg), or the brain-penetrating histamine H4 receptor antagonist JNJ-7777120 (40 mg/kg). Pretreatment with a histamine H3 receptor agonist immepip (10 mg/kg) augmented METH--induced behavior, including hyperlocomotion and stereotyped biting, and combined pretreatment with pitolisant (10 mg/kg) significantly attenuated stereotyped biting. These observations suggest that pretreatment with histamine H3 receptor antagonists attenuate METH-induced hyperlocomotion via releasing histamine after blocking H3 receptors, which then bind to the post-synaptic histamine receptor H1 (but not H2 or H4). It is likely that activation of brain histamine systems may be a good strategy for the development of agents, which treat METH abuse and dependence.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Antagonistas dos Receptores Histamínicos H3/administração & dosagem , Hipercinese/induzido quimicamente , Metanfetamina/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Hipercinese/tratamento farmacológico , Hipercinese/fisiopatologia , Injeções Intraperitoneais , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/administração & dosagem , Piperidinas/administração & dosagem
14.
Dev Psychopathol ; 32(2): 703-718, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31256767

RESUMO

The study examined (a) whether alcohol use subgroups could be identified among African Americans assessed from adolescence through early adulthood, and (b) whether subgroup membership was associated with the interaction between internalizing symptoms and antisocial behavior polygenic risk scores (PRSs) and environmental characteristics (i.e., parental monitoring, community disadvantage). Participants (N = 436) were initially recruited for an elementary school-based prevention trial in a Mid-Atlantic city. Youths reported on the frequency of their past year alcohol use from ages 14-26. DNA was obtained from participants at age 21. Internalizing symptoms and antisocial behavior PRSs were created based on a genome-wide association study (GWAS) conducted by Benke et al. (2014) and Tielbeek et al. (2017), respectively. Parental monitoring and community disadvantage were assessed at age 12. Four classes of past year alcohol use were identified: (a) early-onset, increasing; (b) late-onset, moderate use; (c) low steady; and (d) early-onset, decreasing. In high community disadvantaged settings, participants with a higher internalizing symptoms PRS were more likely to be in the early-onset, decreasing class than the low steady class. When exposed to elevated community disadvantage, participants with a higher antisocial behavior PRS were more likely to be in the early-onset, increasing class than the early-onset, decreasing and late-onset, moderate use classes.


Assuntos
Negro ou Afro-Americano , Estudo de Associação Genômica Ampla , Adolescente , Adulto , Negro ou Afro-Americano/genética , Consumo de Bebidas Alcoólicas , Transtorno da Personalidade Antissocial/genética , Criança , Humanos , Herança Multifatorial , Adulto Jovem
15.
Ann Clin Transl Neurol ; 6(2): 406-415, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30847375

RESUMO

Progressive depletion of selected dopamine neurons is central to much Parkinson's disease (PD) disability. Although symptomatic treatments can ameliorate the disabilities that this neuronal depletion causes, no current strategy is documented to slow these losses. There is substantial evidence that dopamine in intracytoplasmic/extravesicular neuronal compartments can be toxic. Here, I review evidence that supports roles for dopamine compartmentalization, mediated largely by serial actions of plasma membrane SLC6A3/DAT and vesicular SLC18A2/VMAT2 transporters, in the selective patterns of dopamine neuronal loss found in PD brains. This compartmentalization hypothesis for the dopamine cell type specificity of PD lesions nominates available drugs for amelioration of damage arising from miscompartmentalized dopamine and raises cautions in using other drugs.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
16.
Neuropsychopharmacol Rep ; 39(2): 130-133, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30719871

RESUMO

AIM: Repeated psychostimulant drug treatment, including methamphetamine, in rodents readily produces behavioral sensitization, which reflects altered brain function caused by repeated drug exposure. Dendritic remodeling of medium spiny neurons in the nucleus accumbens is thought to be an essential mechanism underlying behavioral sensitization. We recently showed that chronic methamphetamine treatment did not produce behavioral sensitization in serotonin transporter knockout mice. METHODS: In this study, we report the spine density of medium spiny neurons in the nucleus accumbens after repeated methamphetamine injection to examine morphological alterations in serotonin transporter knockout mice. RESULTS: Golgi-COX staining clearly showed that the spine density of medium spiny neurons in the nucleus accumbens increased following repeated methamphetamine treatment in both wild-type and serotonin transporter knockout mice. CONCLUSIONS: Our results suggested that augmented serotonergic neurotransmission produced by serotonin transporter deletion prevents the development of behavioral sensitization in a manner that is independent of dendritic remodeling in the nucleus accumbens.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Metanfetamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Espinhas Dendríticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
17.
Ann N Y Acad Sci ; 1451(1): 112-129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30648269

RESUMO

Receptor-type protein tyrosine phosphatase, receptor type D (PTPRD) has likely roles as a neuronal cell adhesion molecule and synaptic specifier. Interest in its neurobiology and genomics has been stimulated by results from human genetics and mouse models for phenotypes related to addiction, restless leg syndrome, neurofibrillary pathology in Alzheimer's disease, cognitive impairment/intellectual disability, mood lability, and obsessive-compulsive disorder. We review PTPRD's discovery, gene family, candidate homomeric and heteromeric binding partners, phosphatase activities, brain distribution, human genetic associations with nervous system phenotypes, and mouse model data relevant to these phenotypes. We discuss the recently reported discovery of the first small molecule inhibitor of PTPRD phosphatase, the identification of its addiction-related effects, and the implications of these findings for the PTPRD-associated brain phenotypes. In assembling PTPRD neurobiology, human genetics, and mouse genetic and pharmacological datasets, we provide a compelling picture of the roles played by PTPRD, its variation, and its potential as a target for novel therapeutics.


Assuntos
Comportamento Aditivo/genética , Encéfalo/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Animais , Comportamento Aditivo/metabolismo , Modelos Animais de Doenças , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
18.
Ann N Y Acad Sci ; 1451(1): 5-28, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30644552

RESUMO

Substance and alcohol use disorders impose large health and economic burdens on individuals, families, communities, and society. Neither prevention nor treatment efforts are effective in all individuals. Results are often modest. Advances in neuroscience and addiction research have helped to describe the neurobiological changes that occur when a person transitions from recreational substance use to a substance use disorder or addiction. Understanding both the drivers and consequences of substance use in vulnerable populations, including those whose brains are still maturing, has revealed behavioral and biological characteristics that can increase risks of addiction. These findings are particularly timely, as law- and policymakers are tasked to reverse the ongoing opioid epidemic, as more states legalize marijuana, as new products including electronic cigarettes and newly designed abused substances enter the legal and illegal markets, and as "deaths of despair" from alcohol and drug misuse continue.


Assuntos
Comportamento Aditivo/fisiopatologia , Encéfalo/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Plasticidade Neuronal/fisiologia
19.
Mol Autism ; 9: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498565

RESUMO

Background: Hyperserotonemia in the brain is suspected to be an endophenotype of autism spectrum disorder (ASD). Reducing serotonin levels in the brain through modulation of serotonin transporter function may improve ASD symptoms. Methods: We analyzed behavior and gene expression to unveil the causal mechanism of ASD-relevant social deficits using serotonin transporter (Sert) knockout mice. Results: Social deficits were observed in both heterozygous knockout mice (HZ) and homozygous knockout mice (KO), but increases in general anxiety were only observed in KO mice. Two weeks of dietary restriction of the serotonin precursor tryptophan ameliorated both brain hyperserotonemia and ASD-relevant social deficits in Sert HZ and KO mice. The expression of rather distinct sets of genes was altered in Sert HZ and KO mice, and a substantial portion of these genes was also affected by tryptophan depletion. Tryptophan depletion in Sert HZ and KO mice was associated with alterations in the expression of genes involved in signal transduction pathways initiated by changes in extracellular serotonin or melatonin, a derivative of serotonin. Only expression of the AU015836 gene was altered in both Sert HZ and KO mice. AU015836 expression and ASD-relevant social deficits normalized after dietary tryptophan restriction. Conclusions: These findings reveal a Sert gene dose-dependent effect on brain hyperserotonemia and related behavioral sequelae in ASD and a possible therapeutic target to normalize brain hyperserotonemia and ASD-relevant social deficits.


Assuntos
Transtorno Autístico/genética , Encéfalo/metabolismo , Serotonina/metabolismo , Comportamento Social , Animais , Transtorno Autístico/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Triptofano/deficiência , Triptofano/metabolismo
20.
Front Psychiatry ; 9: 441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283366

RESUMO

Background: µ-opioid receptor knockout (MOP-KO) mice display baseline hyperalgesia. We have recently identified changes in tissue volume in the periaqueductal gray matter (PAG) using magnetic resonance imaging voxel-based morphometry. Changes in the structure and connectivity of this region might account for some behavior phenotypes in MOP-KO mice, including hyperalgesia. Methods: Adult male MOP-KO and wild-type (WT) mice were studied. Immunohistochemistry was performed to detect microglia, astrocytes, and neurons in the PAG using specific markers: ionized calcium-binding adaptor molecule 1 (Iba-1) for microglia, glial fibrillary acidic protein (GFAP) for astrocytes, and the neuronal nuclei antigen (NeuN; product of the Rbfox3 gene) for neurons, respectively. Cell counting was performed in the four parallel longitudinal columns of the PAG (dorsomedial, dorsolateral, lateral, and ventrolateral) at three different locations from bregma (-3.5, -4.0, and -4.5 mm). Results: The quantitative analysis showed larger numbers of well-distributed Iba1-IR cells (microglia), NeuN-IR cells (neurons), and GFAP-IR areas (astrocytes) at all the anatomically distinct regions examined, namely, the dorsomedial (DM) PAG, dorsolateral (DL) PAG, lateral (L) PAG, and ventrolateral (VL) PAG, in MOP-KO mice than in control mice. Conclusions: The cellular changes in the PAG identified in this paper may underlie aspects of the behavioral alterations produced by MOP receptor deletion, and suggest that alterations in the cellular structure of the PAG may contribute to hyperalgesic states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...