Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 69(19): 7739-46, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19773431

RESUMO

Human polynucleotide kinase/phosphatase (hPNKP) is a 57.1-kDa enzyme that phosphorylates DNA 5'-termini and dephosphorylates DNA 3'-termini. hPNKP is involved in both single- and double-strand break repair, and cells depleted of hPNKP show a marked sensitivity to ionizing radiation. Therefore, small molecule inhibitors of hPNKP should potentially increase the sensitivity of human tumors to gamma-radiation. To identify small molecule inhibitors of hPNKP, we modified a novel fluorescence-based assay to measure the phosphatase activity of the protein, and screened a diverse library of over 200 polysubstituted piperidines. We identified five compounds that significantly inhibited hPNKP phosphatase activity. Further analysis revealed that one of these compounds, 2-(1-hydroxyundecyl)-1-(4-nitrophenylamino)-6-phenyl-6,7a-dihydro-1H-pyrrolo[3,4-b]pyridine-5,7(2H,4aH)-dione (A12B4C3), was the most effective, with an IC50 of 0.06 micromol/L. When tested for its specificity, A12B4C3 displayed no inhibition of two well-known eukaryotic protein phosphatases, calcineurin and protein phosphatase-1, or APTX, another human DNA 3'-phosphatase, and only limited inhibition of the related PNKP from Schizosaccharomyces pombe. At a nontoxic dose (1 micromol/L), A12B4C3 enhanced the radiosensitivity of human A549 lung carcinoma and MDA-MB-231 breast adenocarcinoma cells by a factor of two, which was almost identical to the increased sensitivity resulting from shRNA-mediated depletion of hPNKP. Importantly, A12B4C3 failed to increase the radiosensitivity of the hPNKP-depleted cells, implicating hPNKP as the principal cellular target of A12B4C3 responsible for increasing the response to radiation. A12B4C3 is thus a useful reagent for probing hPNKP cellular function and will serve as the lead compound for further development of PNKP-targeting drugs.


Assuntos
Reparo do DNA , Inibidores Enzimáticos/farmacologia , Polinucleotídeo 5'-Hidroxiquinase/antagonistas & inibidores , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Camundongos , Especificidade por Substrato
2.
J Comb Chem ; 11(1): 155-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19072614

RESUMO

alpha-exo-Methylene-gamma-lactones and alpha-exo-methylene-gamma-lactams are key structural units in a wide variety of natural products. These substances exhibit a high degree of bioactivity against numerous biological targets that play important roles in several diseases. A library of functionalized gamma-lactones and gamma-lactams containing both unsaturated and saturated side chains at the alpha position of the ring was synthesized. The generation of this library first involves sequential allylation of aldehydes or imines with 2-alkoxycarbonyl allylboronates, followed by ring closure to give alpha-exo-methylene-gamma-lactones or alpha-exo-methylene-gamma-lactams, which are subjected to various transition metal catalyzed coupling reactions to introduce additional diversity. A subset of the library was screened for inhibition of homoserine transacetylase (HTA) from Haemophilus influenzae and showed promising initial activity profiles.


Assuntos
Antivirais/síntese química , Lactamas/síntese química , Lactonas/síntese química , Acetiltransferases/antagonistas & inibidores , Aldeídos/química , Ácidos Borônicos , Avaliação Pré-Clínica de Medicamentos , Haemophilus influenzae/enzimologia , Iminas/química , Lactamas/farmacologia , Lactonas/farmacologia
3.
Mol Cancer Ther ; 7(9): 2672-80, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18790749

RESUMO

Inappropriate activation of JAK/STAT signaling occurs with high frequency in human cancers and is associated with cancer cell survival and proliferation. Therefore, the development of pharmacologic STAT signaling inhibitors has therapeutic potential in the treatment of human cancers. Here, we report 2-[(3,5-bis-trifluoromethyl-phenyl)-hydroxy-methyl]-1-(4-nitro-phenylamino)-6-phenyl-1,2,4a,7a-tetrahydro-pyrrolo[3,4-b]-pyridine-5,7-dione (AUH-6-96) as a novel small-molecule inhibitor of JAK/STAT signaling that we initially identified through a cell-based high-throughput screening using cultured Drosophila cells. Treatment of Drosophila cells with AUH-6-96 resulted in a reduction of Unpaired-induced transcriptional activity and tyrosine phosphorylation of STAT92E, the sole Drosophila STAT homologue. In human cancer cell lines, AUH-6-96 inhibited both constitutive and interleukin-6-induced STAT3 phosphorylation. Specifically, in Hodgkin lymphoma L540 cells, treatment with AUH-6-96 resulted in reduced levels of tyrosine phosphorylated STAT3 and of the STAT3 downstream target gene SOCS3 in a dose- and time-dependent manner. In addition, AUH-6-96-treated L540 cells showed decreased expression of persistently activated JAK3, suggesting that AUH-6-96 inhibits the JAK/STAT pathway signaling in L540 cells by affecting JAK3 activity and subsequently blocking STAT3 signaling. Importantly, AUH-6-96 selectively affected cell viability only of cancer cells harboring aberrant JAK/STAT signaling. In support of the specificity of AUH-6-96 for inhibition of JAK/STAT signaling, treatment with AUH-6-96 decreased cancer cell survival by inducing programmed cell death by down-regulating the expression of STAT3 downstream target antiapoptotic genes, such as Bcl-xL. In summary, this study shows that AUH-6-96 is a novel small-molecule inhibitor of JAK/STAT signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK/STAT signaling.


Assuntos
Antineoplásicos/análise , Antineoplásicos/farmacologia , Imidas/análise , Imidas/farmacologia , Janus Quinase 3/antagonistas & inibidores , Piperidinas/análise , Piperidinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Drosophila , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Neoplásicos , Humanos , Imidas/química , Interleucina-6/farmacologia , Janus Quinase 3/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/química , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo
4.
J Comb Chem ; 9(4): 695-703, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17521171

RESUMO

Several solid- and solution-phase strategies were evaluated for the preparation of libraries of polysubstituted piperidines of type 7 using the tandem aza[4+2]cycloaddition/allylboration multicomponent reaction between 1-aza-4-boronobutadienes, maleimides, and aldehydes. A novel four-component variant of this chemistry was developed in solution phase, and it circumvents the need for pre-forming the azabutadiene component. A parallel synthesis coupled with compound purification by HPLC with mass-based fraction collection allowed the preparation of a library of 944 polysubstituted piperidines in a high degree of purity suitable for biological screening. A representative subset of 244 compounds was screened against a panel of phosphatase enzymes, and despite the modest levels of activity obtained, this study demonstrated that piperidines of type 7 display the right physical properties (e.g., solubility) to be assayed effectively in high-throughput enzymatic tests.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Piperidinas/síntese química , Piperidinas/farmacologia , Aldeídos/química , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/química , Maleimidas/química , Estrutura Molecular , Piperidinas/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Soluções
5.
Curr Opin Chem Biol ; 9(3): 266-76, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15939328

RESUMO

The amalgamation of two of combinatorial chemistry's most attractive concepts--natural product libraries and multicomponent reactions (MCRs)--should provide a powerful tactic for generating libraries of bioactive compounds. Yet, despite many recent advances in this area, only a few MCRs can deliver functionalized products whose structures closely resemble that of complex polycyclic natural products. A large proportion of recently developed MCRs are based on [4+2] or [3+2] cycloadditions, and isocyanide-based processes. Because of substrate limitations, however, they are not always ideally suitable for applications in diversity-oriented synthesis of natural product-like compounds. A promising area awaiting further development is the use of transition metal-catalyzed cascade reactions.


Assuntos
Produtos Biológicos/química , Técnicas de Química Combinatória , Desenho de Fármacos , Compostos Policíclicos/química , Ciclização , Estrutura Molecular
6.
Chemistry ; 9(2): 466-74, 2003 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-12532296

RESUMO

This article describes the design and optimization of a simple three-component aza[4+2]/allylboration reaction to access polysubstituted alpha-hydroxyalkyl piperidines in a highly diastereocontrolled fashion from maleimides, 4-boronohydrazonodienes, and aldehydes. The aldehyde component does not interfere with the first aza[4+2] step, and it was found that this tandem reaction provides better yields of piperidine products 5 when carried out in one-pot. The required 4-borono-hydrazonodienes 1 are synthesized efficiently from the condensation of 3-boronoacrolein pinacol ester (4) with hydrazines. Overall, the three-component process using N-substituted maleimides as dienophiles produces four stereogenic centers and is quite general. It tolerates the use of a wide variety of aldehydes and hydrazine precursors with different electronic and steric characteristics. By allowing such a wide substrate scope and up to four elements of diversity, this reaction process is particularly well adapted towards applications in diversity-oriented synthesis of polysubstituted piperidine derivatives. The suitability of the aza[4+2]/allylboration reaction for use in solid-phase chemistry was also demonstrated using a N-arylmaleidobenzoic acid functionalized resin. This novel multicomponent reaction thus offers a high level of stereocontrol and versatility in the preparation of densely functionalized nitrogen heterocycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...