Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 87(6): e202200116, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35608832

RESUMO

The Philae lander of the Rosetta space mission made a non-nominal landing on comet 67P/Churyumov-Gerasimenko on November 12, 2014. Shortly after, using the limited power available from Philae's batteries, the COSAC instrument performed a single 18-minutes gas chromatogram, which has remained unpublished until now due to the lack of identifiable elution. This work shows that, despite the unsuccessful drilling of the comet and deposition of surface material in the SD2 ovens, the measurements from the COSAC instrument were executed nominally. We describe an automated search for extremely small deviations from noise and discuss the possibility of a signal from ethylene glycol at m/z 31. Arguments for and against this detection are listed, but the results remain inconclusive. Still, the successful operations of an analytical chemistry laboratory on a cometary nucleus gives great hope for the future of space exploration.

2.
Angew Chem Int Ed Engl ; 61(29): e202201925, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35460531

RESUMO

The most pristine material of the Solar System is assumed to be preserved in comets in the form of dust and ice as refractory matter. ESA's mission Rosetta and its lander Philae had been developed to investigate the nucleus of comet 67P/Churyumov-Gerasimenko in situ. Twenty-five minutes after the initial touchdown of Philae on the surface of comet 67P in November 2014, a mass spectrum was recorded by the time-of-flight mass spectrometer COSAC onboard Philae. The new characterization of this mass spectrum through non-negative least squares fitting and Monte Carlo simulations reveals the chemical composition of comet 67P. A suite of 12 organic molecules, 9 of which also found in the original analysis of this data, exhibit high statistical probability to be present in the grains sampled from the cometary nucleus. These volatile molecules are among the most abundant in the comet's chemical composition and represent an inventory of the first raw materials present in the early Solar System.

3.
Exp Astron (Dordr) ; 54(2-3): 713-744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36915624

RESUMO

The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history. Recent evidence for the existence of a subsurface ocean on Ceres and the complex geochemistry suggest past habitability and even the potential for ongoing habitability. GAUSS will return samples from Ceres with the aim of answering the following top-level scientific questions: What is the origin of Ceres and what does this imply for the origin of water and other volatiles in the inner Solar System?What are the physical properties and internal structure of Ceres? What do they tell us about the evolutionary and aqueous alteration history of dwarf planets?What are the astrobiological implications of Ceres? Is it still habitable today?What are the mineralogical connections between Ceres and our current collections of carbonaceous meteorites?

4.
Astrobiology ; 17(6-7): 595-611, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28731819

RESUMO

The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.

5.
Science ; 349(6247): aab0689, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228156

RESUMO

Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds­methyl isocyanate, acetone, propionaldehyde, and acetamide­that had not previously been reported in comets.

6.
Science ; 349(6247): aaa9816, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228158

RESUMO

The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface. The first touchdown site, Agilkia, appears to have a granular soft surface (with a compressive strength of 1 kilopascal) at least ~20 cm thick, possibly on top of a more rigid layer. The final landing site, Abydos, has a hard surface.

7.
Astrobiology ; 9(1): 23-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19203241

RESUMO

In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.


Assuntos
Agências Internacionais , Sociedades Científicas , Voo Espacial , Astronautas , Europa (Continente) , Meio Ambiente Extraterreno , Objetivos , Humanos , Cooperação Internacional , Marte , Planetas Menores , Lua , Robótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...