Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13865, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879684

RESUMO

Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles. Here, we report the immunogenicity and protective efficacy of a DNA vaccine encoding spike protein with D614G mutation (named pcoSpikeD614G) and define a large-scale production process. According to the in vitro studies, pcoSpikeD614G expressed abundant spike protein in HEK293T cells. After the administration of pcoSpikeD614G to BALB/c mice through intramuscular (IM) route and intradermal route using an electroporation device (ID + EP), it induced high level of anti-S1 IgG and neutralizing antibodies (P < 0.0001), strong Th1-biased immune response as shown by IgG2a polarization (P < 0.01), increase in IFN-γ levels (P < 0.01), and increment in the ratio of IFN-γ secreting CD4+ (3.78-10.19%) and CD8+ (5.24-12.51%) T cells. Challenging K18-hACE2 transgenic mice showed that pcoSpikeD614G administered through IM and ID + EP routes conferred 90-100% protection and there was no sign of pneumonia. Subsequently, pcoSpikeD614G was evaluated as a promising DNA vaccine candidate and scale-up studies were performed. Accordingly, a large-scale production process was described, including a 36 h fermentation process of E. coli DH5α cells containing pcoSpikeD614G resulting in a wet cell weight of 242 g/L and a three-step chromatography for purification of the pcoSpikeD614G DNA vaccine.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Camundongos Endogâmicos BALB C , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de DNA , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Camundongos , COVID-19/prevenção & controle , COVID-19/imunologia , Células HEK293 , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Feminino , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
2.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569331

RESUMO

C-Vx is a bioprotective product designed to boost the immune system. This study aimed to determine the antiviral activity of the C-Vx substance against SARS-CoV-2 infection. The effect of C-Vx in K18-hACE2 transgenic mice against the SARS-CoV-2 virus was investigated. For this purpose, ten mice were separated into experimental and control groups. Animals were infected with SARS-CoV-2 prior to the administration of the product to determine whether the product has a therapeutic effect similar to that demonstrated in previous human studies, at a histopathological and molecular level. C-Vx-treated mice survived the challenge, whereas the control mice became ill and/or died. The cytokine-chemokine panel with blood samples taken during the critical days of the disease revealed detailed immune responses. Our findings showed that C-Vx presented 90% protection against the SARS-CoV-2 virus-infected mice. The challenge results and cytokine responses of K18-hACE2 transgenic mice matched previous scientific studies, demonstrating the C-Vx's antiviral efficiency.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , Camundongos Transgênicos , Antivirais/farmacologia , Antivirais/uso terapêutico , Citocinas , Modelos Animais de Doenças
3.
Mol Nutr Food Res ; 67(14): e2200804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37170075

RESUMO

SCOPE: The purpose of this study was to look into the antiviral activity of a plant extract derived from the roots of the Saussurea lappa as a food supplement against SARS-CoV-2 infection. METHODS AND RESULTS: Vero E6 cells are employed in the study to test the neutralizing effect of Saussurea lappa extract against the SARS-CoV-2 virus. For anti-viral activity detection, a sensitive real-time cell analyzer (xCELLigence RTCA) with a high repetition rate is used. A challenge experiment in mice is planned as a result of the in vitro analysis. A challenge test against SARS-CoV-2 is performed with 10 adult female K18-hACE2 transgenic mice in each group for this purpose. The mice in the S. lappa Group are gavaged 2 days before the virus is administered intranasally (i.n.). The control group received PBS instead of the extract. SARS-CoV-2 virus is administered i.n. under anesthesia for the first 3 days of the experiment, and S. lappa extract was administered by gavage in the afternoon. On the 10th day, mice in the S. lappa group survived the study, whereas animals in the control group grew ill and/or died. In this study, the extract protects the mice against the SARS-CoV-2 virus in 90% of the cases. CONCLUSIONS: This study demonstrates that the Saussurea plant has antiviral effects against SARS-CoV-2 in vitro and in animal models.


Assuntos
COVID-19 , Saussurea , Camundongos , Animais , SARS-CoV-2 , Antivirais/farmacologia , Extratos Vegetais/farmacologia
4.
Adv Sci (Weinh) ; 9(27): e2201294, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35896894

RESUMO

Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50 , comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Animais , Anticorpos Monoclonais/uso terapêutico , Camundongos , SARS-CoV-2
5.
Turk J Biol ; 44(3): 203-214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595357

RESUMO

In December 2019 a novel coronavirus was detected in Wuhan City of Hubei Province-China. Owing to a high rate of transmission from human to human, the new virus called SARS-CoV-2 differed from others by its unexpectedly rapid spread. The World Health Organization (WHO) described the most recent coronavirus epidemic as a global pandemic in March 2020. The virus spread triggered a health crisis (the COVID-19 disease) within three months, with socioeconomic implications. No approved targeted-therapies are available for COVID-19, yet. However, it is foreseen that antibody-based treatments may provide an immediate cure for patients. Current neutralizing antibody development studies primarily target the S protein among the structural elements of SARS-CoV-2, which mediates the cell entry of the virus through the angiotensin converting enzyme 2 (ACE2) receptor of host cells. This review aims to provide some of the neutralizing antibody development strategies for SARS-CoV-2 and in vitro and in vivo neutralization assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...