Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1862(6): 183238, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32119864

RESUMO

Acid-secreting intercalated cells of the collecting duct express the chloride/bicarbonate kidney anion exchanger 1 (kAE1) as well as SLC26A7, two proteins that colocalize in the basolateral membrane. The latter protein has been reported to function either as a chloride/bicarbonate exchanger or a chloride channel. Both kAE1 and SLC26A7 are detected in the renal medulla, an environment hyper-osmotic to plasma. Individuals with mutations in the SLC4A1 gene encoding kAE1 and mice lacking Slc26a7 develop distal renal tubular acidosis (dRTA). Here, we aimed to (i) confirm that SLC26A7 can function as chloride/bicarbonate exchanger in Madin-Darby canine kidney (MDCK) cells, and (ii) examine the behavior of SLC26A7 relative to kAE1 wild type or carrying the dRTA mutation R901X in iso- or hyper-osmotic conditions mimicking the renal medulla. Although we found that SLC26A7 abundance increases in hyper-osmotic growth medium, it is reduced in low pH growth conditions mimicking acidosis when expressed at high levels in MDCK cells. In these cells, SLC26A7 exchange activity was independent from extracellular osmolarity. When SLC26A7 protein was co-expressed with kAE1 WT or the R901X dRTA mutant, the cellular chloride/bicarbonate exchange rate was not additive compared to when proteins are expressed individually, possibly reflecting a decreased overall protein expression. Furthermore, the cellular chloride/bicarbonate exchange rate was osmolarity-independent. Together, these results show that (i) in MDCK cells, SLC26A7 is a chloride/bicarbonate exchanger whose abundance is up-regulated by high osmolarity growth medium and (ii) acidic extracellular pH decreases the abundance of SLC26A7 protein.


Assuntos
Antiportadores de Cloreto-Bicarbonato/análise , Concentração de Íons de Hidrogênio , Rim/citologia , Concentração Osmolar , Animais , Antiporters/análise , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Cães , Células Epiteliais/química , Regulação da Expressão Gênica , Células Madin Darby de Rim Canino , Transportadores de Sulfato/análise
2.
Biochem Cell Biol ; 97(3): 234-242, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30208280

RESUMO

In the kidney, the collecting duct (CD) is composed of at least four cell types: principal, type-A intercalated cells (IC), type-B IC, and non-A and non-B IC. Although this heterogeneous composition has been recognized since the end of the nineteenth century, the physiological role of the various cell types in the CD continues to be deciphered as of today. Principal and ICs are essential in ion-water balance and acid-base homeostasis, respectively. However, recent research has revealed a striking interplay and overlap between the specific functions of these cell types. This review summarizes the recent findings on CD cells and their role in multiple pathophysiologies.


Assuntos
Túbulos Renais/metabolismo , Rim/metabolismo , Animais , Humanos
3.
J Am Soc Nephrol ; 28(5): 1507-1520, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27932475

RESUMO

Distal nephron acid secretion is mediated by highly specialized type A intercalated cells (A-ICs), which contain vacuolar H+-ATPase (V-type ATPase)-rich vesicles that fuse with the apical plasma membrane on demand. Intracellular bicarbonate generated by luminal H+ secretion is removed by the basolateral anion-exchanger AE1. Chronically reduced renal acid excretion in distal renal tubular acidosis (dRTA) may lead to nephrocalcinosis and renal failure. Studies in MDCK monolayers led to the proposal of a dominant-negative trafficking mechanism to explain AE1-associated dominant dRTA. To test this hypothesis in vivo, we generated an Ae1 R607H knockin mouse, which corresponds to the most common dominant dRTA mutation in human AE1, R589H. Compared with wild-type mice, heterozygous and homozygous R607H knockin mice displayed incomplete dRTA characterized by compensatory upregulation of the Na+/HCO3- cotransporter NBCn1. Red blood cell Ae1-mediated anion-exchange activity and surface polypeptide expression did not change. Mutant mice expressed far less Ae1 in A-ICs, but basolateral targeting of the mutant protein was preserved. Notably, mutant mice also exhibited reduced expression of V-type ATPase and compromised targeting of this proton pump to the plasma membrane upon acid challenge. Accumulation of p62- and ubiquitin-positive material in A-ICs of knockin mice suggested a defect in the degradative pathway, which may explain the observed loss of A-ICs. R607H knockin did not affect type B intercalated cells. We propose that reduced basolateral anion-exchange activity in A-ICs inhibits trafficking and regulation of V-type ATPase, compromising luminal H+ secretion and possibly lysosomal acidification.


Assuntos
Acidose Tubular Renal/enzimologia , Proteína 1 de Troca de Ânion do Eritrócito/fisiologia , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/enzimologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Proteína 1 de Troca de Ânion do Eritrócito/genética , Masculino , Camundongos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...