Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Pharmaceutics ; 16(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543197

RESUMO

Acute respiratory distress syndrome (ARDS) is a potential life-threatening, heterogenous, inflammatory lung disease. There are no data available on potential drug-drug interactions (pDDIs) in critically ill patients with ARDS. This study analyzed pDDIs in this specific cohort and aimed to investigate possible associations of coronavirus disease 2019 (COVID-19) as an underlying cause of ARDS and treatment with extracorporeal membrane oxygenation (ECMO) with the occurrence of pDDIs. This retrospective study included patients ≥18 years of age diagnosed with ARDS between January 2010 and September 2021. The Janusmed database was used for the identification of pDDIs. A total of 2694 pDDIs were identified in 189 patients with a median treatment duration of 22 days. These included 323 (12%) clinically relevant drug combinations that are best avoided, corresponding to a median rate of 0.05 per day. There was no difference in the number of pDDIs between COVID-19- and non-COVID-19-associated ARDS. In patients treated with ECMO, the rate of the most severely graded pDDIs per day was significantly higher compared with those who did not require ECMO. PDDIs occur frequently in patients with ARDS. On average, each patient may encounter at least one clinically relevant drug combination that should be avoided during their intensive care unit stay.

2.
Front Physiol ; 14: 1109452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064885

RESUMO

Introduction: Ventilator-induced lung injury (VILI) may aggravate critical illness. Although angiotensin-converting enzyme (ACE) inhibition has beneficial effects in ventilator-induced lung injury, its clinical application is impeded by concomitant hypotension. We hypothesized that the aminopeptidase inhibitor ALT-00 may oppose the hypotension induced by an angiotensin-converting enzyme inhibitor, and that this combination would activate the alternative renin-angiotensin system (RAS) axis to counteract ventilator-induced lung injury. Methods: In separate experiments, C57BL/6 mice were mechanically ventilated with low (LVT, 6 mL/kg) and high tidal volumes (HVT, 30 mL/kg) for 4 h or remained unventilated (sham). High tidal volume-ventilated mice were treated with lisinopril (0.15 µg/kg/min) ± ALT-00 at 2.7, 10 or 100 µg/kg/min. Blood pressure was recorded at baseline and after 4 h. Lung histology was evaluated for ventilator-induced lung injury and the angiotensin (Ang) metabolite profile in plasma (equilibrium levels of Ang I, Ang II, Ang III, Ang IV, Ang 1-7, and Ang 1-5) was measured with liquid chromatography tandem mass spectrometry at the end of the experiment. Angiotensin concentration-based markers for renin, angiotensin-converting enzyme and alternative renin-angiotensin system activities were calculated. Results: High tidal volume-ventilated mice treated with lisinopril showed a significant drop in the mean arterial pressure at 4 h compared to baseline, which was prevented by adding ALT-00 at 10 and 100 µg/kg/min. Ang I, Ang II and Ang 1-7 plasma equilibrium levels were elevated in the high tidal volumes group versus the sham group. Lisinopril reduced Ang II and slightly increased Ang I and Ang 1-7 levels versus the untreated high tidal volumes group. Adding ALT-00 at 10 and 100 µg/kg/min increased Ang I and Ang 1-7 levels versus the high tidal volume group, and partly prevented the downregulation of Ang II levels caused by lisinopril. The histological lung injury score was higher in the high tidal volume group versus the sham and low tidal volume groups, and was attenuated by lisinopril ± ALT-00 at all dose levels. Conclusion: Combined angiotensin-converting enzyme plus aminopeptidase inhibition prevented systemic hypotension and maintained the protective effect of lisinopril. In this study, a combination of lisinopril and ALT-00 at 10 µg/kg/min appeared to be the optimal approach, which may represent a promising strategy to counteract ventilator-induced lung injury that merits further exploration.

3.
Front Med (Lausanne) ; 10: 1088709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910485

RESUMO

According to the Berlin Definition of acute respiratory distress syndrome (ARDS), a positive end-expiratory pressure (PEEP) of at least 5 cmH2O is required to diagnose and grade ARDS. While the Berlin consensus statement specifically acknowledges the role of non-invasive ventilation (NIV) in mild ARDS, this stratification has traditionally presumed a mechanically ventilated patient in the context of moderate to severe ARDS. This may not accurately reflect today's reality of clinical respiratory care. NIV and high-flow nasal cannula oxygen therapy (HFNO) have been used for managing of severe forms of acute hypoxemic respiratory failure with growing frequency, including in patients showing pathophysiological signs of ARDS. This became especially relevant during the COVID-19 pandemic. The levels of PEEP achieved with HFNO have been particularly controversial, and the exact FiO2 it achieves is subject to variability. Pinpointing the presence of ARDS in patients receiving HNFO and the severity in those receiving NIV therefore remains methodically problematic. This narrative review highlights the evolution of the ARDS definition in the context of non-invasive ventilatory support and provides an overview of the parallel development of definitions and ventilatory management of ARDS. It summarizes the methodology applied in clinical trials to classify ARDS in non-intubated patients and the respective consequences on treatment. As ARDS severity has significant therapeutic and prognostic consequences, and earlier treatment in non-intubated patients may be beneficial, closing this knowledge gap may ultimately be a relevant step to improve comparability in clinical trial design and outcomes.

4.
Sci Rep ; 12(1): 20117, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418458

RESUMO

SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the "alternative" (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1-7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I-II) and alt-RAS (angiotensins 1-7 and 1-5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1-6: 0.12; days 11-16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels.


Assuntos
COVID-19 , Hormônios Peptídicos , Humanos , Enzima de Conversão de Angiotensina 2 , Sistema Renina-Angiotensina , Angiotensina I , Angiotensina II , SARS-CoV-2 , Renina , Anti-Hipertensivos
5.
Clin Epidemiol ; 14: 1087-1098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204153

RESUMO

Objective: To assess the applicability of evidence from landmark randomized controlled trials (RCTs) of vasopressor treatment in critically ill adults. Study Design and Setting: This prospective, multi-center cohort study was conducted at five medical and surgical intensive care units at three tertiary care centers. Consecutive cases of newly initiated vasopressor treatment were included. The primary end point was the proportion of patients (≥18 years) who met the eligibility criteria of 25 RCTs of vasopressor therapy in critically ill adults included in the most recent Cochrane review. Multilevel Poisson regression was used to estimate the eligibility proportions with 95% confidence intervals for each trial. Secondary end points included the eligibility criteria that contributed most to trial ineligibility, and the relationship between eligibility proportions and (i) the Pragmatic-Explanatory Continuum Indicator Summary-2 (PRECIS-2) score, and (ii) the recruitment-to-screening ratio of each RCT. The PRECIS-2 score was used to assess the degree of pragmatism of each trial. Results: Between January 1, 2017, and January 1, 2019, a total of 1189 cases of newly initiated vasopressor therapy were included. The median proportion of cases meeting eligibility criteria for all 25 RCTs ranged from 1.3% to 6.0%. The eligibility criteria contributing most to trial ineligibility were the exceedance of a specific norepinephrine dose, the presence of a particular shock type, and the drop below a particular blood pressure value. Eligibility proportions increased with the PRECIS-2 score but not with the recruitment-to-screening ratio of the trials. Conclusion: The applicability of evidence from available trials on vasopressor treatment in critically ill adults to patients receiving vasopressors in daily practice is limited. Applicability increases with the degree of study pragmatism but is not reflected in a high recruitment-to-screening ratio. Our findings may help researchers design vasopressor trials and promote standardized assessment and reporting of the degree of pragmatism achieved.

6.
Crit Care ; 26(1): 204, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799196

RESUMO

BACKGROUND: A profound inflammation-mediated lung injury with long-term acute respiratory distress and high mortality is one of the major complications of critical COVID-19. Immunoglobulin M (IgM)-enriched immunoglobulins seem especially capable of mitigating the inflicted inflammatory harm. However, the efficacy of intravenous IgM-enriched preparations in critically ill patients with COVID-19 is largely unclear. METHODS: In this retrospective multicentric cohort study, 316 patients with laboratory-confirmed critical COVID-19 were treated in ten German and Austrian ICUs between May 2020 and April 2021. The primary outcome was 30-day mortality. Analysis was performed by Cox regression models. Covariate adjustment was performed by propensity score weighting using machine learning-based SuperLearner to overcome the selection bias due to missing randomization. In addition, a subgroup analysis focusing on different treatment regimens and patient characteristics was performed. RESULTS: Of the 316 ICU patients, 146 received IgM-enriched immunoglobulins and 170 cases did not, which served as controls. There was no survival difference between the two groups in terms of mortality at 30 days in the overall cohort (HRadj: 0.83; 95% CI: 0.55 to 1.25; p = 0.374). An improved 30-day survival in patients without mechanical ventilation at the time of the immunoglobulin treatment did not reach statistical significance (HRadj: 0.23; 95% CI: 0.05 to 1.08; p = 0.063). Also, no statistically significant difference was observed in the subgroup when a daily dose of ≥ 15 g and a duration of ≥ 3 days of IgM-enriched immunoglobulins were applied (HRadj: 0.65; 95% CI: 0.41 to 1.03; p = 0.068). CONCLUSIONS: Although we cannot prove a statistically reliable effect of intravenous IgM-enriched immunoglobulins, the confidence intervals may suggest a clinically relevant effect in certain subgroups. Here, an early administration (i.e. in critically ill but not yet mechanically ventilated COVID-19 patients) and a dose of ≥ 15 g for at least 3 days may confer beneficial effects without concerning safety issues. However, these findings need to be validated in upcoming randomized clinical trials. Trial registration DRKS00025794 , German Clinical Trials Register, https://www.drks.de . Registered 6 July 2021.


Assuntos
Tratamento Farmacológico da COVID-19 , Estudos de Coortes , Estado Terminal/terapia , Humanos , Imunoglobulina M/uso terapêutico , Imunoglobulinas Intravenosas , Respiração Artificial , Estudos Retrospectivos , SARS-CoV-2
7.
Crit Care Med ; 50(9): e696-e706, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35191411

RESUMO

OBJECTIVES: Ventilator-induced lung injury (VILI) is a major contributor to morbidity and mortality in critically ill patients. Mechanical damage to the lungs is potentially aggravated by the activation of the renin-angiotensin system (RAS). This article describes RAS activation profiles in VILI and discusses the effects of angiotensin (Ang) 1-7 supplementation or angiotensin-converting enzyme (ACE) inhibition with captopril as protective strategies. DESIGN: Animal study. SETTING: University research laboratory. SUBJECTS: C57BL/6 mice. INTERVENTIONS: Anesthetized mice ( n = 12-18 per group) were mechanically ventilated with low tidal volume (LV T , 6 mL/kg), high tidal volume (HV T , 15 mL/kg), or very high tidal volume (VHV T , 30 mL/kg) for 4 hours, or killed after 3 minutes (sham). Additional VHV T groups received infusions of 60 µg/kg/hr Ang 1-7 or a single dose of 100 mg/kg captopril. MEASUREMENTS AND MAIN RESULTS: VILI was characterized by increased bronchoalveolar lavage fluid levels of interleukin (IL)-6, keratinocyte-derived cytokine, and macrophage inflammatory protein-2 (MIP2). The Ang metabolites in plasma measured with liquid chromatography tandem mass spectrometry showed a strong activation of the classical (Ang I, Ang II) and alternative RAS (Ang 1-7, Ang 1-5), with highest concentrations found in the HV T group. Although the lung-tissue ACE messenger RNA expression was unchanged, its protein expression showed a dose-dependent increase under mechanical ventilation. The ACE2 messenger RNA expression decreased in all ventilated groups, whereas ACE2 protein levels remained unchanged. Both captopril and Ang 1-7 led to markedly increased Ang 1-7 plasma levels, decreased Ang II levels, and ACE activity (Ang II/Ang I ratio), and effectively prevented VILI. CONCLUSIONS: VILI is accompanied by a strong activation of the RAS. Based on circulating Ang metabolite levels and tissue expression of RAS enzymes, classical ACE-dependent and alternative RAS cascades were activated in the HV T group, whereas classical RAS activation prevailed with VHV T ventilation. Ang 1-7 or captopril protected from VILI primarily by modifying the systemic RAS profile.


Assuntos
Sistema Renina-Angiotensina , Lesão Pulmonar Induzida por Ventilação Mecânica , Angiotensina II , Animais , Captopril/metabolismo , Captopril/farmacologia , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Sistema Renina-Angiotensina/fisiologia , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
8.
J Clin Monit Comput ; 36(6): 1795-1803, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35165819

RESUMO

Electrical impedance segmentography offers a new radiation-free possibility of continuous bedside ventilation monitoring. The aim of this study was to evaluate the efficacy and reproducibility of this bedside tool by comparing synchronized intermittent mandatory ventilation (SIMV) with neurally adjusted ventilatory assist (NAVA) in critically-ill children. In this prospective randomized case-control crossover trial in a pediatric intensive care unit of a tertiary center, including eight mechanically-ventilated children, four sequences of two different ventilation modes were consecutively applied. All children were randomized into two groups; starting on NAVA or SIMV. During ventilation, electric impedance segmentography measurements were recorded. The relative difference of vertical impedance between both ventilatory modes was measured (median 0.52, IQR 0-0.87). These differences in left apical lung segments were present during the first (median 0.58, IQR 0-0.89, p = 0.04) and second crossover (median 0.50, IQR 0-0.88, p = 0.05) as well as across total impedance (0.52 IQR 0-0.87; p = 0.002). During NAVA children showed a shift of impedance towards caudal lung segments, compared to SIMV. Electrical impedance segmentography enables dynamic monitoring of transthoracic impedance. The immediate benefit of personalized ventilatory strategies can be seen when using this simple-to-apply bedside tool for measuring lung impedance.


Assuntos
Suporte Ventilatório Interativo , Criança , Humanos , Impedância Elétrica , Estudos Prospectivos , Reprodutibilidade dos Testes , Respiração Artificial
9.
Ann Intensive Care ; 12(1): 6, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024972

RESUMO

BACKGROUND: Duration of invasive mechanical ventilation (IMV) prior to extracorporeal membrane oxygenation (ECMO) affects outcome in acute respiratory distress syndrome (ARDS). In coronavirus disease 2019 (COVID-19) related ARDS, the role of pre-ECMO IMV duration is unclear. This single-centre, retrospective study included critically ill adults treated with ECMO due to severe COVID-19-related ARDS between 01/2020 and 05/2021. The primary objective was to determine whether duration of IMV prior to ECMO cannulation influenced ICU mortality. RESULTS: During the study period, 101 patients (mean age 56 [SD ± 10] years; 70 [69%] men; median RESP score 2 [IQR 1-4]) were treated with ECMO for COVID-19. Sixty patients (59%) survived to ICU discharge. Median ICU length of stay was 31 [IQR 20.7-51] days, median ECMO duration was 16.4 [IQR 8.7-27.7] days, and median time from intubation to ECMO start was 7.7 [IQR 3.6-12.5] days. Fifty-three (52%) patients had a pre-ECMO IMV duration of > 7 days. Pre-ECMO IMV duration had no effect on survival (p = 0.95). No significant difference in survival was found when patients with a pre-ECMO IMV duration of < 7 days (< 10 days) were compared to ≥ 7 days (≥ 10 days) (p = 0.59 and p = 1.0). CONCLUSIONS: The role of prolonged pre-ECMO IMV duration as a contraindication for ECMO in patients with COVID-19-related ARDS should be scrutinised. Evaluation for ECMO should be assessed on an individual and patient-centred basis.

10.
Antioxidants (Basel) ; 10(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34943050

RESUMO

Supplemental oxygen is frequently used together with mechanical ventilation to achieve sufficient blood oxygenation. Despite the undoubted benefits, it is vigorously debated whether too much oxygen can also have unpredicted side-effects. Uncertainty is also due to the fact that the molecular mechanisms are still insufficiently understood. The lung endothelium is covered with an exceptionally broad glycocalyx, carrying N- and O-glycans, proteoglycans, glycolipids and glycosaminoglycans. Glycan structures are not genetically determined but depend on the metabolic state and the expression level and activity of biosynthetic and glycan remodeling enzymes, which can be influenced by oxygen and the redox status of the cell. Altered glycan structures can affect cell interactions and signaling. In this study, we investigated the effect of different oxygen conditions on aspects of the glycobiology of the pulmonary endothelium with an emphasis on N-glycans and terminal sialylation using an in vitro cell culture system. We combined a proteomic approach with N-glycan structure analysis by LC-MS, qRT-PCR, sialic acid analysis and lectin binding to show that constant and intermittent hyperoxia induced time dependent changes in global and surface glycosylation. An siRNA approach identified St6gal1 as being primarily responsible for the early transient increase of α2-6 sialylated structures in response to hyperoxia.

11.
Trials ; 22(1): 643, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544463

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a complex clinical diagnosis with various possible etiologies. One common feature, however, is pulmonary permeability edema, which leads to an increased alveolar diffusion pathway and, subsequently, impaired oxygenation and decarboxylation. A novel inhaled peptide agent (AP301, solnatide) was shown to markedly reduce pulmonary edema in animal models of ARDS and to be safe to administer to healthy humans in a Phase I clinical trial. Here, we present the protocol for a Phase IIB clinical trial investigating the safety and possible future efficacy endpoints in ARDS patients. METHODS: This is a randomized, placebo-controlled, double-blind intervention study. Patients with moderate to severe ARDS in need of mechanical ventilation will be randomized to parallel groups receiving escalating doses of solnatide or placebo, respectively. Before advancing to a higher dose, a data safety monitoring board will investigate the data from previous patients for any indication of patient safety violations. The intervention (application of the investigational drug) takes places twice daily over the course of 7 days, ensued by a follow-up period of another 21 days. DISCUSSION: The patients to be included in this trial will be severely sick and in need of mechanical ventilation. The amount of data to be collected upon screening and during the course of the intervention phase is substantial and the potential timeframe for inclusion of any given patient is short. However, when prepared properly, adherence to this protocol will make for the acquisition of reliable data. Particular diligence needs to be exercised with respect to informed consent, because eligible patients will most likely be comatose and/or deeply sedated at the time of inclusion. TRIAL REGISTRATION: This trial was prospectively registered with the EU Clinical trials register (clinicaltrialsregister.eu). EudraCT Number: 2017-003855-47 .


Assuntos
COVID-19 , Edema Pulmonar , Síndrome do Desconforto Respiratório , Método Duplo-Cego , Edema , Humanos , Peptídeos Cíclicos , Permeabilidade , Edema Pulmonar/diagnóstico , Edema Pulmonar/tratamento farmacológico , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2 , Resultado do Tratamento
12.
Eur J Cardiothorac Surg ; 61(1): 172-179, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34406372

RESUMO

OBJECTIVES: The aim of this study was to investigate the load and composition of cerebral microemboli in adult patients undergoing venoarterial extracorporeal life support (ECLS). METHODS: Adult ECLS patients were investigated for the presence of cerebral microemboli and compared to critically ill, pressure-controlled ventilated controls and healthy volunteers. Cerebral microemboli were detected in both middle cerebral arteries for 30 min using transcranial Doppler ultrasound. Neurological outcome (ischaemic stroke, global brain ischaemia, intracerebral haemorrhage, seizure, metabolic encephalopathy, sensorimotor sequelae and neuropsychiatric disorders) was additionally evaluated. RESULTS: Twenty ECLS patients (cannulations: 15 femoro-femoral, 4 femoro-subclavian, 1 femoro-aortic), 20 critically ill controls and 20 healthy volunteers were analysed. ECLS patients had statistically significantly more cerebral microemboli than critically ill controls {123 (43-547) [median (interquartile range)] vs 35 (16-74), difference: 88 [95% confidence interval (CI) 19-320], P = 0.023} and healthy volunteers [11 (5-12), difference: 112 (95% CI 45-351), P < 0.0001]. In ECLS patients, 96.5% (7346/7613) of cerebral microemboli were of gaseous composition, while solid cerebral microemboli [1 (0-5)] were detected in 12 out of 20 patients. ECLS patients had more neurological complications than critically ill controls (12/20 vs 3/20, P = 0.003). In ECLS patients, a high microembolic rate (>100/30 min) tended to be associated with neurological complications including ischaemic stroke, neuropsychiatric disorders, sensorimotor sequelae and non-convulsive status epilepticus (odds ratio 4.5, 95% CI 0.46-66.62; P = 0.559). CONCLUSIONS: Our results indicate that adult ECLS patients are continuously exposed to many gaseous and, frequently, to few solid cerebral microemboli. Prolonged cerebral microemboli formation may contribute to neurological morbidity related to ECLS treatment. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT02020759, https://clinicaltrials.gov/ct2/show/NCT02020759?term=erdoes&rank=1.


Assuntos
Isquemia Encefálica , Oxigenação por Membrana Extracorpórea , Embolia Intracraniana , Acidente Vascular Cerebral , Adulto , Isquemia Encefálica/etiologia , Estudos de Coortes , Oxigenação por Membrana Extracorpórea/efeitos adversos , Humanos , Embolia Intracraniana/diagnóstico por imagem , Embolia Intracraniana/etiologia , Estudos Prospectivos , Ultrassonografia Doppler Transcraniana/efeitos adversos
13.
ASAIO J ; 67(7): 776-784, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34170882

RESUMO

Extracorporeal membrane oxygenation (ECMO) has established as a cornerstone therapy in severe acute respiratory distress syndrome and refractory hemodynamic failure. As circuit integrity is crucial for adequate organ support, component failure may necessitate a system exchange. In this retrospective study, incidence and etiology of system exchanges during applications of venovenous, venoarterial ECMO, and extracorporeal CO2 removal were examined. Sixty-three (44.4%) of 142 patients were affected by one or more exchanges, totaling 105 replaced circuits. The predominant exchange reason was clotting (n = 20), followed by hemolysis (n = 19), systemic coagulation disorders (n = 13), reconfiguration (n = 13), impaired gas exchange (n = 10), mechanical complications (n = 8), bleeding (n = 6), failed weaning (n = 5), prophylactic exchange (n = 3), and undocumented/other (n = 8). Nineteen (18.1%) events were classified as acute and 70 (66.7%) events as elective exchanges. Patients with circuit exchanges more frequently underwent renal replacement therapy at ECMO initiation (49.2% vs. 29.1%; p = 0.023), had a longer ECMO treatment duration (18 vs. 7.5 days, p < 0.001), and lower hospital survival (29.5% vs. 57.1%; p = 0.002). Considering the high occurrence of coagulation complications, further optimization of coagulation management is deemed necessary.


Assuntos
Oxigenação por Membrana Extracorpórea , Coagulação Sanguínea , Oxigenação por Membrana Extracorpórea/efeitos adversos , Humanos , Incidência , Síndrome do Desconforto Respiratório , Estudos Retrospectivos
14.
Bioengineering (Basel) ; 8(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801555

RESUMO

CO2 removal via membrane oxygenators during lung protective ventilation has become a reliable clinical technique. For further optimization of oxygenators, accurate prediction of the CO2 removal rate is necessary. It can either be determined by measuring the CO2 content in the exhaust gas of the oxygenator (sweep flow-based) or using blood gas analyzer data and a CO2 solubility model (blood-based). In this study, we determined the CO2 removal rate of a prototype oxygenator utilizing both methods in in vitro trials with bovine and in vivo trials with porcine blood. While the sweep flow-based method is reliably accurate, the blood-based method depends on the accuracy of the solubility model. In this work, we quantified performances of four different solubility models by calculating the deviation of the CO2 removal rates determined by both methods. Obtained data suggest that the simplest model (Loeppky) performs better than the more complex ones (May, Siggaard-Anderson, and Zierenberg). The models of May, Siggaard-Anderson, and Zierenberg show a significantly better performance for in vitro bovine blood data than for in vivo porcine blood data. Furthermore, the suitability of the Loeppky model parameters for bovine blood (in vitro) and porcine blood (in vivo) is evaluated.

15.
Physiol Rep ; 9(3): e14590, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33565273

RESUMO

The pulmonary endothelium is an immediate recipient of high oxygen concentrations upon oxygen therapy and mediates down-stream responses. Cyclic collapse and reopening of atelectatic lung areas during mechanical ventilation with high fractions of inspired oxygen result in the propagation of oxygen oscillations in the hypoxic/hyperoxic range. We used primary murine lung endothelial cell cultures to investigate cell responses to constant and oscillating oxygen conditions in the hypoxic to hyperoxic range. Severe constant hyperoxia had pro-inflammatory and cytotoxic effects including an increase in expression of ICAM1, E-selectin, and RAGE at 24 hr exposure. The coagulative/fibrinolytic system responded by upregulation of uPA, tPA, and vWF and PAI1 under constant severe hyperoxia. Among antioxidant enzymes, the upregulation of SOD2, TXN1, TXNRD3, GPX1, and Gstp1 at 24 hr, but downregulation of SOD3 at 72 hr constant hyperoxia was evident. Hypoxic/hyperoxic oscillating oxygen conditions induced pro-inflammatory cytokine release to a lesser extent and later than constant hyperoxia. Gene expression analyses showed upregulation of NFKB p65 mRNA at 72 hr. More evident was a biphasic response of NOS3 and ACE1 gene expression (downregulation until 24 hr and upregulation at 72 hr). ACE2 mRNA was upregulated until 72 hr, but shedding of the mature protein from the cell surface favored ACE1. Oscillations resulted in severe production of peroxynitrite, but apart from upregulation of Gstp1 at 24 hr responses of antioxidative proteins were less pronounced than under constant hyperoxia. Oscillating oxygen in the hypoxic/hyperoxic range has a characteristical impact on vasoactive mediators like NOS3 and on the activation of the renin-angiotensin system in the lung endothelium.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Hiperóxia/metabolismo , Hipóxia/metabolismo , Pulmão/irrigação sanguínea , Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Coagulação Sanguínea , Hipóxia Celular , Células Cultivadas , Citocinas/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Sistema Renina-Angiotensina , Fatores de Tempo
16.
Front Physiol ; 12: 806062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35498160

RESUMO

Acute respiratory distress syndrome (ARDS) is a major concern in critical care medicine with a high mortality of over 30%. Injury to the lungs is caused not only by underlying pathological conditions such as pneumonia, sepsis, or trauma, but also by ventilator-induced lung injury (VILI) resulting from high positive pressure levels and a high inspiratory oxygen fraction. Apart from mechanical factors that stress the lungs with a specific physical power and cause volutrauma and barotrauma, it is increasingly recognized that lung injury is further aggravated by biological mediators. The COVID-19 pandemic has led to increased interest in the role of the renin-angiotensin system (RAS) in the context of ARDS, as the RAS enzyme angiotensin-converting enzyme 2 serves as the primary cell entry receptor for severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. Even before this pandemic, studies have documented the involvement of the RAS in VILI and its dysregulation in clinical ARDS. In recent years, analytical tools for RAS investigation have made major advances based on the optimized precision and detail of mass spectrometry. Given that many clinical trials with pharmacological interventions in ARDS were negative, RAS-modifying drugs may represent an interesting starting point for novel therapeutic approaches. Results from animal models have highlighted the potential of RAS-modifying drugs to prevent VILI or treat ARDS. While these drugs have beneficial pulmonary effects, the best targets and application forms for intervention still have to be determined to avoid negative effects on the circulation in clinical settings.

17.
Wien Klin Wochenschr ; 132(21-22): 664-670, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32948888

RESUMO

Coronavirus disease 2019 (COVID-19) progresses mildly in most of the cases; however, about 5% of the patients develop a severe acute respiratory distress syndrome (ARDS). Of all COVID-19 patients 3% need intensive care treatment, which becomes a great challenge for anesthesiology and intensive care medicine, medically, hygienically and for technical safety requirements. For these reasons, only experienced medical and nursing staff in the smallest grouping possible should be assigned. For these team members, a consistent use of personal protective equipment (PPE) is essential.Due to the immense medical challenges, the following treatment guidelines were developed by the ÖGARI (Österreichische Gesellschaft für Anästhesiologie, Reanimation und Intensivmedizin), FASIM (Federation of Austrian Societies of Intensive Care Medicine) and ÖGIAIN (Österreichische Gesellschaft für Internistische und Allgemeine Intensivmedizin und Notfallmedizin).The recommendations given in this article are to be understood as short snapshots of the moment; all basic guidelines are works in progress and will be regularly updated as evidence levels, new study results and additional experience are gathered.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Áustria , COVID-19 , Infecções por Coronavirus/terapia , Cuidados Críticos , Humanos , Pneumonia Viral/terapia , SARS-CoV-2
18.
Front Physiol ; 11: 947, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848874

RESUMO

Soon after its discovery in the 18th century, oxygen was applied as a therapeutic agent to treat severely ill patients. Lack of oxygen, commonly termed as hypoxia, is frequently encountered in different disease states and is detrimental to human life. However, at the end of the 19th century, Paul Bert and James Lorrain Smith identified what is known as oxygen toxicity. The molecular basis of this phenomenon is oxygen's readiness to accept electrons and to form different variants of aggressive radicals that interfere with normal cell functions. The human body has evolved to maintain oxygen homeostasis by different molecular systems that are either activated in the case of oxygen under-supply, or to scavenge and to transform oxygen radicals when excess amounts are encountered. Research has provided insights into cellular mechanisms of oxygen homeostasis and is still called upon in order to better understand related diseases. Oxygen therapy is one of the prime clinical interventions, as it is life saving, readily available, easy to apply and economically affordable. However, the current state of research also implicates a reconsidering of the liberal application of oxygen causing hyperoxia. Increasing evidence from preclinical and clinical studies suggest detrimental outcomes as a consequence of liberal oxygen therapy. In this review, we summarize concepts of cellular mechanisms regarding different forms of disturbed cellular oxygen homeostasis that may help to better define safe clinical application of oxygen therapy.

19.
Wien Klin Mag ; 23(4): 168-173, 2020.
Artigo em Alemão | MEDLINE | ID: mdl-32837601

RESUMO

The pandemic from the SARS-CoV­2 Virus is currently challenging health care systems all over the world. Maintaining appropriate staffing and resources in healthcare facilities is essential to guarantee a safe work environment for healthcare personnel and safe patient care. Extracorporeal membrane oxygenation (ECMO) represents a valuable therapeutic option in patients with severe heart or lung failure. Although only a limited proportion of COVID-19 patients develops respiratory or circulatory failure that is refractory to conventional therapies, it is of utmost importance to clearly define criteria for the use of ECMOs in this steadily growing patient population. The ECMO working group of the Medical University of Vienna has established the following recommendations for ECMO support in COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...