Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 294, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479972

RESUMO

BACKGROUND: Identifying variants associated with diseases is a challenging task in medical genetics research. Current studies that prioritize variants within individual genomes generally rely on known variants, evidence from literature and genomes, and patient symptoms and clinical signs. The functionalities of the existing tools, which rank variants based on given patient symptoms and clinical signs, are restricted to the coverage of ontologies such as the Human Phenotype Ontology (HPO). However, most clinicians do not limit themselves to HPO while describing patient symptoms/signs and their associated variants/genes. There is thus a need for an automated tool that can prioritize variants based on freely expressed patient symptoms and clinical signs. RESULTS: STARVar is a Symptom-based Tool for Automatic Ranking of Variants using evidence from literature and genomes. STARVar uses patient symptoms and clinical signs, either linked to HPO or expressed in free text format. It returns a ranked list of variants based on a combined score from two classifiers utilizing evidence from genomics and literature. STARVar improves over related tools on a set of synthetic patients. In addition, we demonstrated its distinct contribution to the domain on another synthetic dataset covering publicly available clinical genotype-phenotype associations by using symptoms and clinical signs expressed in free text format. CONCLUSIONS: STARVar stands as a unique and efficient tool that has the advantage of ranking variants with flexibly expressed patient symptoms in free-form text. Therefore, STARVar can be easily integrated into bioinformatics workflows designed to analyze disease-associated genomes. AVAILABILITY: STARVar is freely available from https://github.com/bio-ontology-research-group/STARVar .


Assuntos
Genômica , Software , Humanos , Fenótipo , Biologia Computacional , Estudos de Associação Genética
2.
Front Genet ; 14: 1139626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091791

RESUMO

Late-stage drug development failures are usually a consequence of ineffective targets. Thus, proper target identification is needed, which may be possible using computational approaches. The reason being, effective targets have disease-relevant biological functions, and omics data unveil the proteins involved in these functions. Also, properties that favor the existence of binding between drug and target are deducible from the protein's amino acid sequence. In this work, we developed OncoRTT, a deep learning (DL)-based method for predicting novel therapeutic targets. OncoRTT is designed to reduce suboptimal target selection by identifying novel targets based on features of known effective targets using DL approaches. First, we created the "OncologyTT" datasets, which include genes/proteins associated with ten prevalent cancer types. Then, we generated three sets of features for all genes: omics features, the proteins' amino-acid sequence BERT embeddings, and the integrated features to train and test the DL classifiers separately. The models achieved high prediction performances in terms of area under the curve (AUC), i.e., AUC greater than 0.88 for all cancer types, with a maximum of 0.95 for leukemia. Also, OncoRTT outperformed the state-of-the-art method using their data in five out of seven cancer types commonly assessed by both methods. Furthermore, OncoRTT predicts novel therapeutic targets using new test data related to the seven cancer types. We further corroborated these results with other validation evidence using the Open Targets Platform and a case study focused on the top-10 predicted therapeutic targets for lung cancer.

3.
Front Mol Biosci ; 9: 913602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936793

RESUMO

Deep learning has massive potential in predicting phenotype from different omics profiles. However, deep neural networks are viewed as black boxes, providing predictions without explanation. Therefore, the requirements for these models to become interpretable are increasing, especially in the medical field. Here we propose a computational framework that takes the gene expression profile of any primary cancer sample and predicts whether patients' samples are primary (localized) or metastasized to the brain, bone, lung, or liver based on deep learning architecture. Specifically, we first constructed an AutoEncoder framework to learn the non-linear relationship between genes, and then DeepLIFT was applied to calculate genes' importance scores. Next, to mine the top essential genes that can distinguish the primary and metastasized tumors, we iteratively added ten top-ranked genes based upon their importance score to train a DNN model. Then we trained a final multi-class DNN that uses the output from the previous part as an input and predicts whether samples are primary or metastasized to the brain, bone, lung, or liver. The prediction performances ranged from AUC of 0.93-0.82. We further designed the model's workflow to provide a second functionality beyond metastasis site prediction, i.e., to identify the biological functions that the DL model uses to perform the prediction. To our knowledge, this is the first multi-class DNN model developed for the generic prediction of metastasis to various sites.

4.
PLoS One ; 17(7): e0271737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877764

RESUMO

More than 30 types of amyloids are linked to close to 50 diseases in humans, the most prominent being Alzheimer's disease (AD). AD is brain-related local amyloidosis, while another amyloidosis, such as AA amyloidosis, tends to be more systemic. Therefore, we need to know more about the biological entities' influencing these amyloidosis processes. However, there is currently no support system developed specifically to handle this extraordinarily complex and demanding task. To acquire a systematic view of amyloidosis and how this may be relevant to the brain and other organs, we needed a means to explore "amyloid network systems" that may underly processes that leads to an amyloid-related disease. In this regard, we developed the DES-Amyloidoses knowledgebase (KB) to obtain fast and relevant information regarding the biological network related to amyloid proteins/peptides and amyloid-related diseases. This KB contains information obtained through text and data mining of available scientific literature and other public repositories. The information compiled into the DES-Amyloidoses system based on 19 topic-specific dictionaries resulted in 796,409 associations between terms from these dictionaries. Users can explore this information through various options, including enriched concepts, enriched pairs, and semantic similarity. We show the usefulness of the KB using an example focused on inflammasome-amyloid associations. To our knowledge, this is the only KB dedicated to human amyloid-related diseases derived primarily through literature text mining and complemented by data mining that provides a novel way of exploring information relevant to amyloidoses.


Assuntos
Doença de Alzheimer , Amiloidose , Amiloide , Humanos , Bases de Conhecimento , Proteína Amiloide A Sérica
5.
PeerJ ; 10: e13061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402106

RESUMO

Biomedical knowledge is represented in structured databases and published in biomedical literature, and different computational approaches have been developed to exploit each type of information in predictive models. However, the information in structured databases and literature is often complementary. We developed a machine learning method that combines information from literature and databases to predict drug targets and indications. To effectively utilize information in published literature, we integrate knowledge graphs and published literature using named entity recognition and normalization before applying a machine learning model that utilizes the combination of graph and literature. We then use supervised machine learning to show the effects of combining features from biomedical knowledge and published literature on the prediction of drug targets and drug indications. We demonstrate that our approach using datasets for drug-target interactions and drug indications is scalable to large graphs and can be used to improve the ranking of targets and indications by exploiting features from either structure or unstructured information alone.


Assuntos
Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Interações Medicamentosas , Aprendizado de Máquina Supervisionado , Bases de Dados Factuais
6.
Front Genet ; 12: 771092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858485

RESUMO

Bone is the most common site of distant metastasis from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Such bone metastases (BM) cause many painful skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with adverse effects on life quality. Many bone-targeting agents developed based on the current understanding of BM onset's molecular mechanisms dull these adverse effects. However, only a few studies investigated potential predictors of high risk for developing BM, despite such knowledge being critical for early interventions to prevent or delay BM. This work proposes a computational network-based pipeline that incorporates a ML/DL component to predict BM development. Based on the proposed pipeline we constructed several machine learning models. The deep neural network (DNN) model exhibited the highest prediction accuracy (AUC of 92.11%) using the top 34 featured genes ranked by betweenness centrality scores. We further used an entirely separate, "external" TCGA dataset to evaluate the robustness of this DNN model and achieved sensitivity of 85%, specificity of 80%, positive predictive value of 78.10%, negative predictive value of 80%, and AUC of 85.78%. The result shows the models' way of learning allowed it to zoom in on the featured genes that provide the added benefit of the model displaying generic capabilities, that is, to predict BM for samples from different primary sites. Furthermore, existing experimental evidence provides confidence that about 50% of the 34 hub genes have BM-related functionality, which suggests that these common genetic markers provide vital insight about BM drivers. These findings may prompt the transformation of such a method into an artificial intelligence (AI) diagnostic tool and direct us towards mechanisms that underlie metastasis to bone events.

8.
Sci Rep ; 11(1): 14344, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253812

RESUMO

T-cells are a subtype of white blood cells circulating throughout the body, searching for infected and abnormal cells. They have multifaceted functions that include scanning for and directly killing cells infected with intracellular pathogens, eradicating abnormal cells, orchestrating immune response by activating and helping other immune cells, memorizing encountered pathogens, and providing long-lasting protection upon recurrent infections. However, T-cells are also involved in immune responses that result in organ transplant rejection, autoimmune diseases, and some allergic diseases. To support T-cell research, we developed the DES-Tcell knowledgebase (KB). This KB incorporates text- and data-mined information that can expedite retrieval and exploration of T-cell relevant information from the large volume of published T-cell-related research. This KB enables exploration of data through concepts from 15 topic-specific dictionaries, including immunology-related genes, mutations, pathogens, and pathways. We developed three case studies using DES-Tcell, one of which validates effective retrieval of known associations by DES-Tcell. The second and third case studies focuses on concepts that are common to Grave's disease (GD) and Hashimoto's thyroiditis (HT). Several reports have shown that up to 20% of GD patients treated with antithyroid medication develop HT, thus suggesting a possible conversion or shift from GD to HT disease. DES-Tcell found miR-4442 links to both GD and HT, and that miR-4442 possibly targets the autoimmune disease risk factor CD6, which provides potential new knowledge derived through the use of DES-Tcell. According to our understanding, DES-Tcell is the first KB dedicated to exploring T-cell-relevant information via literature-mining, data-mining, and topic-specific dictionaries.


Assuntos
Doença de Graves/metabolismo , Linfócitos T/metabolismo , Doenças Autoimunes/metabolismo , Doença de Hashimoto/metabolismo , Humanos
9.
ACS Synth Biol ; 9(12): 3217-3227, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33198455

RESUMO

Developing computational tools that can facilitate the rational design of cell factories producing desired products at increased yields is challenging, as the tool needs to take into account that the preferred host organism usually has compounds that are consumed by competing reactions that reduce the yield of the desired product. On the other hand, the preferred host organisms may not have the native metabolic reactions needed to produce the compound of interest; thus, the computational tool needs to identify the metabolic reactions that will most efficiently produce the desired product. In this regard, we developed the generic tool PATHcre8 to facilitate an optimized search for heterologous biosynthetic pathway routes. PATHcre8 finds and ranks biosynthesis routes in a large number of organisms, including Cyanobacteria. The tool ranks the pathways based on feature scores that reflect reaction thermodynamics, the potentially toxic products in the pathway (compound toxicity), intermediate products in the pathway consumed by competing reactions (product consumption), and host-specific information such as enzyme copy number. A comparison with several other similar tools shows that PATHcre8 is more efficient in ranking functional pathways. To illustrate the effectiveness of PATHcre8, we further provide case studies focused on isoprene production and the biodegradation of cocaine. PATHcre8 is free for academic and nonprofit users and can be accessed at https://www.cbrc.kaust.edu.sa/pathcre8/.


Assuntos
Algoritmos , Interface Usuário-Computador , Butadienos , Cocaína/metabolismo , Cianobactérias/metabolismo , Bases de Dados Factuais , Hemiterpenos/biossíntese , Engenharia Metabólica
10.
Gene X ; 5: 100035, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32550561

RESUMO

BACKGROUND: The accurate identification of the exon/intron boundaries is critical for the correct annotation of genes with multiple exons. Donor and acceptor splice sites (SS) demarcate these boundaries. Therefore, deriving accurate computational models to predict the SS are useful for functional annotation of genes and genomes, and for finding alternative SS associated with different diseases. Although various models have been proposed for the in silico prediction of SS, improving their accuracy is required for reliable annotation. Moreover, models are often derived and tested using the same genome, providing no evidence of broad application, i.e. to other poorly studied genomes. RESULTS: With this in mind, we developed the Splice2Deep models for SS detection. Each model is an ensemble of deep convolutional neural networks. We evaluated the performance of the models based on the ability to detect SS in Homo sapiens, Oryza sativa japonica, Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans. Results demonstrate that the models efficiently detect SS in other organisms not considered during the training of the models. Compared to the state-of-the-art tools, Splice2Deep models achieved significantly reduced average error rates of 41.97% and 28.51% for acceptor and donor SS, respectively. Moreover, the Splice2Deep cross-organism validation demonstrates that models correctly identify conserved genomic elements enabling annotation of SS in new genomes by choosing the taxonomically closest model. CONCLUSIONS: The results of our study demonstrated that Splice2Deep both achieved a considerably reduced error rate compared to other state-of-the-art models and the ability to accurately recognize SS in other organisms for which the model was not trained, enabling annotation of poorly studied or newly sequenced genomes. Splice2Deep models are implemented in Python using Keras API; the models and the data are available at https://github.com/SomayahAlbaradei/Splice_Deep.git.

11.
Oxid Med Cell Longev ; 2020: 5904315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308806

RESUMO

Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.


Assuntos
Doença/genética , PubMed , RNA/metabolismo , Humanos , Oxirredução , Projetos de Pesquisa
12.
Gene ; 763S: 100035, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34493371

RESUMO

BACKGROUND: The accurate identification of the exon/intron boundaries is critical for the correct annotation of genes with multiple exons. Donor and acceptor splice sites (SS) demarcate these boundaries. Therefore, deriving accurate computational models to predict the SS are useful for functional annotation of genes and genomes, and for finding alternative SS associated with different diseases. Although various models have been proposed for the in silico prediction of SS, improving their accuracy is required for reliable annotation. Moreover, models are often derived and tested using the same genome, providing no evidence of broad application, i.e. to other poorly studied genomes. RESULTS: With this in mind, we developed the Splice2Deep models for SS detection. Each model is an ensemble of deep convolutional neural networks. We evaluated the performance of the models based on the ability to detect SS in Homo sapiens, Oryza sativa japonica, Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans. Results demonstrate that the models efficiently detect SS in other organisms not considered during the training of the models. Compared to the state-of-the-art tools, Splice2Deep models achieved significantly reduced average error rates of 41.97% and 28.51% for acceptor and donor SS, respectively. Moreover, the Splice2Deep cross-organism validation demonstrates that models correctly identify conserved genomic elements enabling annotation of SS in new genomes by choosing the taxonomically closest model. CONCLUSIONS: The results of our study demonstrated that Splice2Deep both achieved a considerably reduced error rate compared to other state-of-the-art models and the ability to accurately recognize SS in other organisms for which the model was not trained, enabling annotation of poorly studied or newly sequenced genomes. Splice2Deep models are implemented in Python using Keras API; the models and the data are available at https://github.com/SomayahAlbaradei/Splice_Deep.git.


Assuntos
Genoma/genética , Genômica , Sítios de Splice de RNA/genética , Software , Algoritmos , Animais , Mapeamento Cromossômico , Biologia Computacional , DNA/genética , Drosophila melanogaster/genética , Éxons/genética , Humanos , Íntrons/genética , Redes Neurais de Computação
13.
Mol Biol Evol ; 36(12): 2922-2924, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411700

RESUMO

Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation. Sequenceserver uses simple algorithms to prevent potential analysis errors and provides flexible text-based and visual outputs to support researcher productivity. Our software can be rapidly installed for use by individuals or on shared servers.


Assuntos
Biologia Computacional/métodos , Técnicas Genéticas , Software
14.
Oxid Med Cell Longev ; 2019: 1769437, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223421

RESUMO

In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.


Assuntos
Biologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Oxirredução , Estresse Oxidativo
15.
Methods ; 166: 31-39, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991099

RESUMO

Polyadenylation signals (PAS) are found in most protein-coding and some non-coding genes in eukaryotes. Their accurate recognition improves understanding gene regulation mechanisms and recognition of the 3'-end of transcribed gene regions where premature or alternate transcription ends may lead to various diseases. Although different methods and tools for in-silico prediction of genomic signals have been proposed, the correct identification of PAS in genomic DNA remains challenging due to a vast number of non-relevant hexamers identical to PAS hexamers. In this study, we developed a novel method for PAS recognition. The method is implemented in a hybrid PAS recognition model (HybPAS), which is based on deep neural networks (DNNs) and logistic regression models (LRMs). One of such models is developed for each of the 12 most frequent human PAS hexamers. DNN models appeared the best for eight PAS types (including the two most frequent PAS hexamers), while LRM appeared best for the remaining four PAS types. The new models use different combinations of signal processing-based, statistical, and sequence-based features as input. The results obtained on human genomic data show that HybPAS outperforms the well-tuned state-of-the-art Omni-PolyA models, reducing the classification error for different PAS hexamers by up to 57.35% for 10 out of 12 PAS types, with Omni-PolyA models being better for two PAS types. For the most frequent PAS types, 'AATAAA' and 'ATTAAA', HybPAS reduced the error rate by 35.14% and 34.48%, respectively. On average, HybPAS reduces the error by 30.29%. HybPAS is implemented partly in Python and in MATLAB available at https://github.com/EMANG-KAUST/PolyA_Prediction_LRM_DNN.


Assuntos
Genoma Humano/genética , Genômica/métodos , Redes Neurais de Computação , Software , Humanos , Poli A/genética , Poliadenilação/genética , Proteínas/genética
16.
Sci Rep ; 8(1): 13359, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190574

RESUMO

During cellular division DNA replicates and this process is the basis for passing genetic information to the next generation. However, the DNA copy process sometimes produces a copy that is not perfect, that is, one with mutations. The collection of all such mutations in the DNA copy of an organism makes it unique and determines the organism's phenotype. However, mutations are often the cause of diseases. Thus, it is useful to have the capability to explore links between mutations and disease. We approached this problem by analyzing a vast amount of published information linking mutations to disease states. Based on such information, we developed the DES-Mutation knowledgebase which allows for exploration of not only mutation-disease links, but also links between mutations and concepts from 27 topic-specific dictionaries such as human genes/proteins, toxins, pathogens, etc. This allows for a more detailed insight into mutation-disease links and context. On a sample of 600 mutation-disease associations predicted and curated, our system achieves precision of 72.83%. To demonstrate the utility of DES-Mutation, we provide case studies related to known or potentially novel information involving disease mutations. To our knowledge, this is the first mutation-disease knowledgebase dedicated to the exploration of this topic through text-mining and data-mining of different mutation types and their associations with terms from multiple thematic dictionaries.


Assuntos
Doenças Genéticas Inatas/genética , Bases de Conhecimento , Mutação , Software , Humanos
17.
Nucleic Acids Res ; 45(5): 2838-2848, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27924038

RESUMO

Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna.


Assuntos
Bases de Dados de Ácidos Nucleicos , Bases de Conhecimento , MicroRNAs/fisiologia , RNA Longo não Codificante/fisiologia , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo
18.
Nucleic Acids Res ; 43(W1): W580-4, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25845596

RESUMO

Since 2009 the EMBL-EBI Job Dispatcher framework has provided free access to a range of mainstream sequence analysis applications. These include sequence similarity search services (https://www.ebi.ac.uk/Tools/sss/) such as BLAST, FASTA and PSI-Search, multiple sequence alignment tools (https://www.ebi.ac.uk/Tools/msa/) such as Clustal Omega, MAFFT and T-Coffee, and other sequence analysis tools (https://www.ebi.ac.uk/Tools/pfa/) such as InterProScan. Through these services users can search mainstream sequence databases such as ENA, UniProt and Ensembl Genomes, utilising a uniform web interface or systematically through Web Services interfaces (https://www.ebi.ac.uk/Tools/webservices/) using common programming languages, and obtain enriched results with novel visualisations. Integration with EBI Search (https://www.ebi.ac.uk/ebisearch/) and the dbfetch retrieval service (https://www.ebi.ac.uk/Tools/dbfetch/) further expands the usefulness of the framework. New tools and updates such as NCBI BLAST+, InterProScan 5 and PfamScan, new categories such as RNA analysis tools (https://www.ebi.ac.uk/Tools/rna/), new databases such as ENA non-coding, WormBase ParaSite, Pfam and Rfam, and new workflow methods, together with the retirement of depreciated services, ensure that the framework remains relevant to today's biological community.


Assuntos
Análise de Sequência , Software , Biologia Computacional , Bases de Dados Genéticas , Internet , Alinhamento de Sequência
19.
Nucleic Acids Res ; 43(W1): W585-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25855807

RESUMO

The European Bioinformatics Institute (EMBL-EBI-https://www.ebi.ac.uk) provides free and unrestricted access to data across all major areas of biology and biomedicine. Searching and extracting knowledge across these domains requires a fast and scalable solution that addresses the requirements of domain experts as well as casual users. We present the EBI Search engine, referred to here as 'EBI Search', an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. API integration provides access to analytical tools, allowing users to further investigate the results of their search. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types including sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, together with relevant life science literature.


Assuntos
Ferramenta de Busca , Enzimas/química , Genes , Internet , Proteínas/química , Análise de Sequência , Interface Usuário-Computador
20.
Nucleic Acids Res ; 41(Web Server issue): W597-600, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23671338

RESUMO

Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.


Assuntos
Bases de Dados Genéticas , Software , Internet , Alinhamento de Sequência , Integração de Sistemas , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...