Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Nutr ; : 1-8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751244

RESUMO

A healthy diet is at the forefront of measures to prevent type 2 diabetes. Certain vegetable and fish oils, such as pine nut oil (PNO), have been demonstrated to ameliorate the adverse metabolic effects of a high-fat diet. The present study investigates the involvement of the free fatty acid receptors 1 (FFAR1) and 4 (FFAR4) in the chronic activity of hydrolysed PNO (hPNO) on high-fat diet-induced obesity and insulin resistance. Male C57BL/6J wild-type, FFAR1 knockout (-/-) and FFAR4-/- mice were placed on 60 % high-fat diet for 3 months. Mice were then dosed hPNO for 24 d, during which time body composition, energy intake and expenditure, glucose tolerance and fasting plasma insulin, leptin and adiponectin were measured. hPNO improved glucose tolerance and decreased plasma insulin in the wild-type and FFAR1-/- mice, but not the FFAR4-/- mice. hPNO also decreased high-fat diet-induced body weight gain and fat mass, whilst increasing energy expenditure and plasma adiponectin. None of these effects on energy balance were statistically significant in FFAR4-/- mice, but it was not shown that they were significantly less than in wild-type mice. In conclusion, chronic hPNO supplementation reduces the metabolically detrimental effects of high-fat diet on obesity and insulin resistance in a manner that is dependent on the presence of FFAR4.

2.
Elife ; 112022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229717

RESUMO

Volatile small molecules, including the short-chain fatty acids (SCFAs), acetate and propionate, released by the gut microbiota from the catabolism of nondigestible starches, can act in a hormone-like fashion via specific G-protein-coupled receptors (GPCRs). The primary GPCR targets for these SCFAs are FFA2 and FFA3. Using transgenic mice in which FFA2 was replaced by an altered form called a Designer Receptor Exclusively Activated by Designer Drugs (FFA2-DREADD), but in which FFA3 is unaltered, and a newly identified FFA2-DREADD agonist 4-methoxy-3-methyl-benzoic acid (MOMBA), we demonstrate how specific functions of FFA2 and FFA3 define a SCFA-gut-brain axis. Activation of both FFA2/3 in the lumen of the gut stimulates spinal cord activity and activation of gut FFA3 directly regulates sensory afferent neuronal firing. Moreover, we demonstrate that FFA2 and FFA3 are both functionally expressed in dorsal root- and nodose ganglia where they signal through different G proteins and mechanisms to regulate cellular calcium levels. We conclude that FFA2 and FFA3, acting at distinct levels, provide an axis by which SCFAs originating from the gut microbiota can regulate central activity.


Assuntos
Eixo Encéfalo-Intestino , Receptores de Superfície Celular , Animais , Ácidos Graxos Voláteis/metabolismo , Camundongos , Propionatos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Clin Nutr ; 40(4): 2169-2179, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33059911

RESUMO

BACGROUND & AIM: Pinolenic acid, a major component (~20%) of pine nut oil, is a dual agonist of the free fatty acid receptors, FFA1 and FFA4, which may regulate release of incretins and ghrelin from the gut. Here, we investigated the acute effects of hydrolyzed pine nut oil (PNO-FFA), delivered to the small intestine by delayed-release capsules, on glucose tolerance, insulin, incretin and ghrelin secretion, and appetite. METHODS: In two cross-over studies, we evaluated 3 g unhydrolyzed pine nut oil (PNO-TG) or 3 g PNO-FFA versus no oil in eight healthy, non-obese subjects (study 1), and 3 g PNO-FFA or 6 g PNO-FFA versus no oil in ten healthy, overweight/obese subjects (study 2) in both studies given in delayed-release capsules 30 min prior to a 4-h-oral glucose tolerance test (OGTT). Outcomes were circulating levels of glucose, insulin, GLP-1, GIP, ghrelin, appetite and gastrointestinal tolerability during OGTT. RESULTS: Both 3 g PNO-FFA in study 1 and 6 g PNO-FFA in study 2 markedly increased GLP-1 levels (p < 0.001) and attenuated ghrelin levels (p < 0.001) during the last 2 h of the OGTT compared with no oil. In study 2, these effects of PNO-FFA were accompanied by an increased satiety and fullness (p < 0.03), and decreased prospective food consumption (p < 0.05). PNO-FFA caused only small reductions in glucose and insulin levels during the first 2 h of the OGTT. CONCLUSIONS: Our results provide evidence that PNO-FFA delivered to the small intestine by delayed-release capsules may reduce appetite by augmenting GLP-1 release and attenuating ghrelin secretion in the late postprandial state. CLINICAL TRIAL REGISTRY NUMBERS: NCT03062592 and NCT03305367.


Assuntos
Apetite/efeitos dos fármacos , Grelina/sangue , Teste de Tolerância a Glucose , Incretinas/sangue , Pinus , Óleos de Plantas/administração & dosagem , Adulto , Idoso , Glicemia/análise , Peptídeo C/sangue , Estudos Cross-Over , Preparações de Ação Retardada , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Polipeptídeo Inibidor Gástrico/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Hidrólise , Insulina/sangue , Intestino Delgado/efeitos dos fármacos , Ácidos Linolênicos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Óleos de Plantas/química , Sementes
4.
J Med Chem ; 63(7): 3577-3595, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32141297

RESUMO

Free fatty acid receptor 3 (FFA3, previously GPR41) is activated by short-chain fatty acids, mediates health effects of the gut microbiota, and is a therapeutic target for metabolic and inflammatory diseases. The shortage of well-characterized tool compounds has however impeded progress. Herein, we report structure-activity relationship of an allosteric modulator series and characterization of physicochemical and pharmacokinetic properties of selected compounds, including previous and new tools. Two representatives, 57 (TUG-1907) and 63 (TUG-2015), showed improved solubility and preserved potency. Of these, 57, with EC50 = 145 nM and a solubility of 33 µM, showed high clearance in vivo but is a preferred tool in vitro. In contrast, 63, with EC50 = 162 nM and a solubility of 9 µM, showed lower clearance and seems better suited for in vivo studies. Using 57, we demonstrate for the first time that FFA3 activation leads to calcium mobilization in murine dorsal root ganglia.


Assuntos
Quinolonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Animais , Estabilidade de Medicamentos , Gânglios Espinais/efeitos dos fármacos , Humanos , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/metabolismo , Quinolonas/farmacocinética , Receptores Acoplados a Proteínas G/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA