Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363014

RESUMO

Accumulating vast amounts of pollutants drives modern civilization toward sustainable development. Construction waste is one of the prominent issues impeding progress toward net-zero. Pollutants must be utilized in constructing civil engineering structures for a green ecosystem. On the other hand, large-scale production of industrial steel fibers (ISFs) causes significant damage to the goal of a sustainable environment. Recycled steel fibers (RSFs) from waste tires have been suggested to replace ISFs. This research critically examines RSF's application in the mechanical properties' improvement of concrete and mortar. A statistical analysis of dimensional parameters of RSFs, their properties, and their use in manufacturing various cement-based composites are given. Furthermore, comparative assessments are carried out among the improvements in compressive, split tensile, and flexural strengths of plain and RSF-incorporated concrete and mortar. In addition, the optimum contents of RSF for each strength property are also discussed. The influence of RSFs parameters on various strength properties of concrete and mortars is discussed. The possible applications of RSF for various civil engineering structures are reviewed. The limitations and errors noticed in previous review papers are also outlined. It is found that the maximum enhancement in compressive strength (CS), split tensile strength (STS), and flexure strength (FS) are 78%, 149%, and 157%, respectively, with the addition of RSF into concrete. RSF increased cement mortars' CS, STS, and FS by 46%, 50.6%, and 69%, respectively. The current study encourages the building sector to use RSFs for sustainable concrete.

2.
Materials (Basel) ; 15(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295416

RESUMO

Structural materials sustainability is gaining popularity across the globe at present. Reusing natural resources, building, demolition debris, and solid waste are the most apparent tools to make construction more environmentally friendly. Traditional concrete is believed to be less durable, stronger, environmentally friendly, and socially and commercially feasible than industrial waste concrete. The evolution of non-destructive testing (NDT) across time has not been investigated in depth by researchers. An experimental study was carried out to propose the use of non-destructive mechanisms that would enable us to assess concrete's compressive strength without causing destruction. Varying quantities of industrial waste (coal bottom ash (CBA) and waste glass sludge (WGS)) were incorporated to cast concrete prisms (150 mm × 150 mm × 150 mm). The results obtained helped us to establish relationships between the compressive strength of concrete and the Schmidt hammer rebound value, as well as the ultrasonic pulse velocities. Microstructural analysis showed that incorporating 10% of CBA and WGS improved the porosity of concrete specimens, which shows the applicability of these industrial wastes as partial cement replacements. Scanning electron microscopy (SEM) showed traces of calcium alumino-silicate hydrate (C-A-S-H), portlandite and C-S-H, which indicates the binder characteristics of CBA and WGS. The concept of the response surface approach (RSM) for optimizing cement and industrial waste substitution was validated by the polynomial work expectation. The model was statistically significant when the fluctuation of ANOVA was analyzed using a p value with a significance level of 0.05. The study results show that the usage of 15% CBA and 10% WGS as a cementitious additive and cement replacement has the potential to increase the strength of concrete significantly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...