Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 409: 120-129, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31051217

RESUMO

Fatty acid binding protein 7 (FABP7) is expressed in astrocytes of the developing and mature central nervous system, and modulates astrocyte function by controlling intracellular fatty acid homeostasis. Astrocytes in the spinal cord have an important role in the process of myelin degeneration and regeneration. In the present study, the authors examined the role of FABP7 in astrocytes in a mouse model of experimental autoimmune encephalomyelitis (EAE), which is an established model of multiple sclerosis (MS). FABP7 was expressed in the white matter astrocytes and increased after EAE onset; particularly strong expression was observed in demyelinating regions. In FABP7-knockout (KO) mice, the onset of EAE symptoms occurred earlier than in wild type (WT) mice, and mRNA expression levels of inflammatory cytokines (IL-17 and TNF-α) were higher in FABP7-KO lumbar spinal cord than in WT lumbar spinal cord at early stage of EAE. Interestingly, however, the clinical score was significantly reduced in FABP7-KO mice compared with WT mice in the late phase of EAE. Moreover, the area exhibiting expression of fibronectin, which is an extracellular matrix protein mainly produced by astrocytes and inhibits remyelination of oligodendrocytes, was significantly decreased in FABP7-KO compared with WT mice. Collectively, FABP7 in astrocyte may have a role to protect from the induction of inflammation leading to demyelination in CNS at early phase of EAE. Moreover, FABP7 may be involved in the regulation of fibronectin production through the modification of astrocyte activation at late phase of EAE.


Assuntos
Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Medula Espinal/metabolismo , Animais , Citocinas/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/genética , Feminino , Fibronectinas/metabolismo , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Substância Branca/metabolismo
2.
Mol Neurobiol ; 56(8): 5763-5779, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30680690

RESUMO

Fatty acid-binding proteins (FABPs) bind and internalize long-chain fatty acids, controlling lipid dynamics. Recent studies have proposed the involvement of FABPs, particularly FABP7, in lipid droplet (LD) formation in glioma, but the physiological significance of LDs is poorly understood. In this study, we sought to examine the role of FABP7 in primary mouse astrocytes, focusing on its protective effect against reactive oxygen species (ROS) stress. In FABP7 knockout (KO) astrocytes, ROS induction significantly decreased LD accumulation, elevated ROS toxicity, and impaired thioredoxin (TRX) but not peroxiredoxin 1 (PRX1) signalling compared to ROS induction in wild-type astrocytes. Consequently, activation of apoptosis signalling molecules, including p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and increased expression of cleaved caspase 3 were observed in FABP7 KO astrocytes under ROS stress. N-acetyl L-cysteine (NAC) application successfully rescued the ROS toxicity in FABP7 KO astrocytes. Furthermore, FABP7 overexpression in U87 human glioma cell line revealed higher LD accumulation and higher antioxidant defence enzyme (TRX, TRX reductase 1 [TRXRD1]) expression than mock transfection and protected against apoptosis signalling (p38 MAPK, SAPK/JNK and cleaved caspase 3) activation. Taken together, these data suggest that FABP7 protects astrocytes from ROS toxicity through LD formation, providing new insights linking FABP7, lipid homeostasis, and neuropsychiatric/neurodegenerative disorders, including Alzheimer's disease and schizophrenia.


Assuntos
Astrócitos/patologia , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Neuroproteção , Espécies Reativas de Oxigênio/toxicidade , Acetilcisteína/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Neuroproteção/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
Adv Biol Regul ; 71: 206-218, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30245263

RESUMO

Lipids are major molecules for the function of organisms and are involved in the pathophysiology of various diseases. Fatty acids (FAs) signaling and their metabolism are some of the most important pathways in tumor development, as lipids serve as energetic sources during carcinogenesis. Fatty acid binding proteins (FABPs) facilitate FAs transport to different cell organelles, modulating their metabolism along with mediating other physiological activities. FABP7, brain-typed FABP, is thought to be an important molecule for cell proliferation in healthy as well as diseased organisms. Several studies on human tumors and tumor-derived cell lines put FABP7 in the center of tumorigenesis, and its high expression level has been reported to correlate with poor prognosis in different tumor types. Several types of FABP7-expressing tumors have shown an up-regulation of cell signaling activity, but molecular mechanisms of FABP7 involvement in tumorigenesis still remain elusive. In this review, we focus on the expression and function of FABP7 in different tumors, and possible mechanisms of FABP7 in tumor proliferation and migration.


Assuntos
Proliferação de Células , Proteína 7 de Ligação a Ácidos Graxos/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/biossíntese , Animais , Proteína 7 de Ligação a Ácidos Graxos/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...