Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 231: 109485, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37080381

RESUMO

The vesicant sulfur mustard (SM) is a chemical warfare agent that causes acute and chronic injury to the cornea and proximal anterior segment structures. Despite clinical evidence of SM-exposure causing unexplained retinal deficits, there have been no animal studies conducted to examine the retinal toxicity of this vesciant. The cardinal hallmark of retinal response to stressors or injury is the activation of reactive gliosis, a cellular process largely governed by Müller glia. Previously we showed that corneal exposure to sodium hydroxide elicits rapid induction of reactive gliosis and results in retinal degeneration in a dose-related manner. Based on this evidence, we hypothesized that the vesicant nitrogen mustard (NM), an analog of SM, may also elicit reactive gliosis. To test this idea, we developed a mouse model of NM ocular injury and investigated corneal and retinal effects focusing on citrullination, a posttranslational modification (PTM) of proteins. This PTM was recently linked to alkali injury and has also been shown to occur in retinal degenerative conditions. Here, we demonstrate that corneal exposure to 1% NM causes a synchronous activation of citrullination in both the cornea and retina with hypercitrullination becoming apparent temporally and manifesting with altered cellular expression characteristics. A key finding is that ocular citrullination occurs acutely as early as 1-h post-injury in both the cornea and retina, which underscores a need for expeditious interception of this acute corneal and retinal response. Moreover, exploiting dose response and temporal studies, we uncoupled NM-induced retinal citrullination from its induction of retinal gliosis. Our findings demonstrate that hypercitrullination is a common corneo-retinal mechanism that sensitizes the eye to NM injury and suggests that counteracting hypercitrullination may provide a suitable countermeasure to vesicant injury.


Assuntos
Traumatismos Oculares , Gás de Mostarda , Doenças Retinianas , Animais , Camundongos , Mecloretamina/toxicidade , Irritantes/efeitos adversos , Irritantes/metabolismo , Gliose/induzido quimicamente , Gliose/metabolismo , Córnea/metabolismo , Traumatismos Oculares/induzido quimicamente , Traumatismos Oculares/metabolismo , Retina , Gás de Mostarda/toxicidade , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/metabolismo
2.
J Shoulder Elbow Surg ; 30(9): 2177-2183, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33529773

RESUMO

BACKGROUND AND HYPOTHESIS: The treatment of periprosthetic joint infection is complicated by the presence of residual biofilm, which resists eradication owing to bacterial adherence to orthopedic implants. The purpose of this study was to compare Bactisure (Zimmer Biomet, Warsaw, IN, USA), povidone-iodine (Betadine), and chlorhexidine gluconate solution (Irrisept; Irrimax, Gainesville, FL, USA) in reducing biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes inoculated on cobalt-chrome, titanium, and stainless steel disks, representing metals commonly used for shoulder arthroplasty. The hypothesis was that there would be no significant difference in biofilm reduction among the 3 topical adjuvants. METHODS: Strains of S aureus (ATCC 35556), S epidermidis (ATCC 35984), and C acnes (LMG 16711) were grown on cobalt-chrome, titanium, and stainless steel disks. For each strain, the disks were divided into 4 groups: (1) control, (2) povidone-iodine (Betadine), (3) chlorhexidine gluconate (Irrisept), and (4) Bactisure. Bacteria were grown on 5% sheep blood agar plates. Biofilm eradication was quantified using adenosine triphosphate bioluminescence and compared with controls 48 and 72 hours after implementation of the topical adjuvant. RESULTS: At 72 hours after implementation of the topical adjuvant, a statistically significant reduction in colony-forming units was observed for all topical adjuvants across all tested metals, as compared with their respective control. With respect to the topical adjuvants themselves, Bactisure more consistently demonstrated the most significant reduction in colony-forming units across all bacteria when the tested medium was adjusted for, with the exception of S aureus, which showed similar results to Betadine at 72 hours. CONCLUSION: By use of commonly encountered topical adjuvants on S aureus-, S epidermidis-, and C acnes-inoculated disks of various implant metals, a significant reduction in biofilm production was observed. Bactisure, a recent Food and Drug Administration-approved topical adjuvant, demonstrated the overall greatest efficacy of the agents studied.


Assuntos
Infecções Relacionadas à Prótese , Animais , Biofilmes , Próteses e Implantes , Infecções Relacionadas à Prótese/prevenção & controle , Ovinos , Staphylococcus aureus , Staphylococcus epidermidis
3.
Physiol Genomics ; 50(9): 669-679, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29932826

RESUMO

Phosphorylation and lysine (K)-acetylation are dynamic posttranslational modifications of proteins. Previous proteomic studies have identified over 170,000 phosphorylation sites and 15,000 K-acetylation sites in mammals. We recently reported that the inner medullary collecting duct (IMCD), which functions in the regulation of water-reabsorption, via the actions of vasopressin, expresses many of the enzymes that can modulated K-acetylation. The purpose of this study was to determine the K-acetylated or phosphorylated proteins expressed in IMCD cells. Second we questioned whether vasopressin V2 receptor activation significantly affects the IMCD acetylome or phosphoproteome? K-acetylated or serine-, threonine-, or tyrosine-phosphorylated peptides were identified from native rat IMCDs by proteomic analysis with four different enzymes (trypsin, chymotrypsin, ASP-N, or Glu-C) to generate a high-resolution proteome. K-acetylation was identified in 431 unique proteins, and 64% of the K-acetylated sites were novel. The acetylated proteins were expressed in all compartments of the cell and were enriched in pathways including glycolysis and vasopressin-regulated water reabsorption. In the vasopressin-regulated water reabsorption pathway, eight proteins were acetylated, including the novel identification of the basolateral water channel, AQP3, acetylated at K282; 215 proteins were phosphorylated in this IMCD cohort, including AQP2 peptides that were phosphorylated at four serines: 256, 261, 264, and 269. Acute dDAVP did not significantly affect the IMCD acetylome; however, it did significantly affect previously known vasopressin-regulated phosphorylation sites. In conclusion, presence of K-acetylated proteins involved in metabolism, ion, and water transport in the IMCD points to multiple roles of K-acetylation beyond its canonical role in transcriptional regulation.


Assuntos
Túbulos Renais Coletores/metabolismo , Lisina/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Acetilação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Gluconeogênese/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Masculino , Fosfopeptídeos/química , Fosfoproteínas/química , Proteoma/química , Ratos Sprague-Dawley , Vasopressinas/farmacologia
4.
Physiol Rep ; 5(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28108651

RESUMO

Roflumilast is a cyclic nucleotide phosphodiesterase inhibitor that is FDA-approved for treatment of chronic obstructive pulmonary disease. With a view toward possible use for treatment of patients with X-linked nephrogenic diabetes insipidus (NDI) due to hemizygous mutations in the V2 vasopressin receptor, this study sought to determine the effect of roflumilast on aquaporin-2 (AQP2) phosphorylation, AQP2 trafficking, and water permeability in the rat inner medullary collecting duct (IMCD). In the presence of the vasopressin analog dDAVP (0.1 nmol/L), both roflumilast and its active metabolite roflumilast N-oxide (RNO) significantly increased phosphorylation at S256, S264, and S269, and decreased phosphorylation at S261 (immunoblotting) in IMCD suspensions in a dose-dependent manner (3-3000 nmol/L). Another commonly used phosphodiesterase inhibitor, IBMX, affected phosphorylation only at the highest concentration in this range. However, neither roflumilast nor RNO had an effect on AQP2 phosphorylation in the absence of vasopressin. Furthermore, roflumilast alone did not increase AQP2 trafficking to the plasma membrane (immunofluorescence) or increase water permeability in freshly microdissected perfused IMCD segments. We conclude that roflumilast can be used to enhance vasopressin's action on AQP2 activity in the renal collecting duct, but has no detectable effect in the absence of vasopressin. These findings suggest that roflumilast may not have a beneficial effect in X-linked NDI, but could find useful application in acquired NDI.


Assuntos
Aminopiridinas/administração & dosagem , Aquaporina 2/metabolismo , Benzamidas/administração & dosagem , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Inibidores da Fosfodiesterase 4/administração & dosagem , 1-Metil-3-Isobutilxantina/administração & dosagem , Animais , Permeabilidade Capilar/efeitos dos fármacos , Ciclopropanos/administração & dosagem , Relação Dose-Resposta a Droga , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Masculino , Fosforilação , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Vasopressinas/metabolismo , Água/metabolismo
5.
Am J Physiol Renal Physiol ; 312(1): F84-F95, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784696

RESUMO

Phosphorylation of the aquaporin-2 (AQP2) water channel at four COOH-terminal serines plays a central role in the regulation of water permeability of the renal collecting duct. The level of phosphorylation at these sites is determined by a balance between phosphorylation by protein kinases and dephosphorylation by phosphatases. The phosphatases that dephosphorylate AQP2 have not been identified. Here, we use large-scale data integration techniques to identify serine-threonine phosphatases likely to interact with AQP2 in renal collecting duct principal cells. As a first step, we have created a comprehensive list of 38 S/T phosphatase catalytic subunits present in the mammalian genome. Then we used Bayes' theorem to integrate available information from large-scale data sets from proteomic and transcriptomic studies to rank the known S/T phosphatases with regard to the likelihood that they interact with AQP2 in renal collecting duct cells. To broaden the analysis, we have generated new proteomic data (LC-MS/MS) identifying 4538 distinct proteins including 22 S/T phosphatases in cytoplasmic fractions from native inner medullary collecting duct cells from rats. The official gene symbols corresponding to the top-ranked phosphatases (common names in parentheses) were: Ppp1cb (PP1-ß), Ppm1g (PP2C), Ppp1ca (PP1-α), Ppp3ca (PP2-B or calcineurin), Ppp2ca (PP2A-α), Ppp1cc (PP1-γ), Ppp2cb (PP2A-ß), Ppp6c (PP6C), and Ppp5c (PP5). This ranking correlates well with results of prior reductionist studies of ion and water channels in renal collecting duct cells.


Assuntos
Aquaporina 2/metabolismo , Túbulos Renais Coletores/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Cromatografia Líquida/métodos , Humanos , Rim/metabolismo , Camundongos , Fosforilação , Proteômica/métodos , Ratos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA