Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Gene ; 933: 148926, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255858

RESUMO

Cotton (Gossypium hirsutum L.) is of great economic importance as a cultivated crop in many parts of the world. In addition to being a pillar of the textile industry, cotton and its byproducts are used for livestock feed, seed oil, and other products. Bacillus thuringiensis crystal toxin (Bt) expression in cotton provides effective protection against chewing insects but does not defend plants from piercing/sucking insect pests. With the aim to create transgenic plants with resistance against piercing/sucking pests, we used Agrobacterium-mediated genetic transformation of cotton cultivar Coker 312 to express the Allium sativum leaf agglutinin (ASLA) gene from the phloem-specific rolC promoter. The ASLA transgene was stably inherited and showed Mendelian segregation in the T1 generation. Transgenic lines, expressing the ASLA gene, showed explicit resistance against major sap-sucking pests. Green peach aphid (Myzus persicae Sulzer) choice assays showed that 75% of aphids preferred untransformed cotton plants relative to those expressing the ASLA gene. In detached leaf bioassays, plants expressing ASLA caused 82% aphid mortality and 44-53% reduction in fecundity. Clip cage bioassays with whiteflies (Bemisia tabaci Gennadius) showed 74-82% mortality and 44-60% decrease in fecundity due to ASLA gene expression. In whole plant bioassays, whiteflies showed 77% mortality and a 54% decrease in fecundity on ASLA transgenics. Importantly, we did not observe a negative effect of the ASLA gene on ladybugs (Coccinella septempunctata) that consumed these whiteflies. Together, our findings demonstrate the potential of ASLA-transgenic cotton for providing protection against two devastating insect pests, whiteflies and aphids. The ASLA-transgenic cotton appears promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding.

2.
J Agric Food Chem ; 72(29): 16048-16075, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980762

RESUMO

Climate change, particularly drought and heat stress, may slash agricultural productivity by 25.7% by 2080, with maize being the hardest hit. Therefore, unraveling the molecular nature of plant responses to these stressors is vital for the development of climate-smart maize. This manuscript's primary objective was to examine how maize plants respond to these stresses, both individually and in combination. Additionally, the paper delved into harnessing the potential of maize wild relatives as a valuable genetic resource and leveraging AI-based technologies to boost maize resilience. The role of multiomics approaches particularly genomics and transcriptomics in dissecting the genetic basis of stress tolerance was also highlighted. The way forward was proposed to utilize a bunch of information obtained through omics technologies by an interdisciplinary state-of-the-art forward-looking big-data, cyberagriculture system, and AI-based approach to orchestrate the development of climate resilient maize genotypes.


Assuntos
Secas , Genômica , Termotolerância , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Termotolerância/genética , Mudança Climática , Multiômica
3.
Electron. j. biotechnol ; Electron. j. biotechnol;47: 72-82, sept. 2020. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1253093

RESUMO

BACKGROUND: Piercing/sucking insect pests in the order Hemiptera causes substantial crop losses by removing photoassimilates and transmitting viruses to their host plants. Cloning and heterologous expression of plantderived insect resistance genes is a promising approach to control aphids and other sap-sucking insect pests. While expression from the constitutive 35S promoter provides broad protection, the phloem-specific rolC promoter provides better defense against sap sucking insects. The selection of plant-derived insect resistance genes for expression in crop species will minimize bio-safety concerns. RESULTS: Pinellia ternata leaf agglutinin gene (pta), encodes an insecticidal lectin, was isolated and cloned under the 35S and rolC promoters in the pGA482 plant transformation vector for Agrobacterium-mediated tobacco transformation. Integration and expression of the transgene was validated by Southern blotting and qRT-PCR, respectively. Insect bioassays data of transgenic tobacco plants showed that expression of pta under rolC promoter caused 100% aphid mortality and reduced aphid fecundity up to 70% in transgenic tobacco line LRP9. These results highlight the better effectivity of pta under rolC promoter to control phloem feeders, aphids. CONCLUSIONS: These findings suggested the potential of PTA against aphids and other sap sucking insect pests. Evaluation of gene in tobacco under two different promoters; 35S constitutive promoter and rolC phloemspecific promoter could be successfully use for other crop plants particularly in cotton. Development of transgenic cotton plants using plant-derived insecticidal, PTA, would be key step towards commercialization of environmentally safe insect-resistant crops.


Assuntos
Afídeos/patogenicidade , Controle Biológico de Vetores , Pinellia/química , Vírus de Plantas , Nicotiana , Southern Blotting , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Plantas Geneticamente Modificadas , Folhas de Planta/química , Transgenes , Resistência à Doença , Proteção de Cultivos
4.
Sci Rep ; 9(1): 11774, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409859

RESUMO

Cotton is the main fiber producing crop globally, with a significant impact on the economy of Pakistan. Bt cotton expressing a Cry1Ac gene is grown over a large area in Pakistan, however, there is a major concern that bollworms may develop resistance. Here we have used a durable resistance strategy against bollworms by developing a double gene construct containing Cry1Ac and Cry2Ab (pGA482-12R) for cotton transformation. Both Cry toxin genes have been cloned in the same T-DNA borders and transferred successfully into cotton via Agrobacterium-mediated transformation. Both genes are expressed in transgenic cotton plants and is likely to help breeders in developing new cotton cultivars by incorporating these genes in cotton lines having no Bt genes or expressing Cry1Ac gene (Mon 531). Positive transgenic cotton was identified by PCR using specific primers for the amplification of both Cry1Ac and Cry2Ab genes. Cry1Ac and Cry2Ab expression was confirmed with an immunostrip test and quantified using ELISA that showed significant spatio-temporal expression of Cry2Ab ranging from 3.28 to 7.72 µg/g of the tissue leaf. Insect bioassay with army worm (Spodoptera litura) was performed to check the efficacy of NIBGE (National Institute for Biotechnology and Genetic Engineering) double gene transgenic cotton plants and up to 93% insect mortality was observed.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Plantas Geneticamente Modificadas/genética , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Gossypium/crescimento & desenvolvimento , Gossypium/parasitologia , Humanos , Inseticidas/farmacologia , Larva/genética , Larva/crescimento & desenvolvimento , Mariposas/genética , Mariposas/patogenicidade , Paquistão , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA