Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 36(11): 2675-2684, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32385563

RESUMO

INTRODUCTION: Pilocytic astrocytoma (PA) is the most common brain tumor that affects the pediatric population. Even though PA is benign and treatment only involves surgery, recurrent or unresectable tumors require chemo- and radiotherapy. Besides BRAF, CDKN2A, or IDH mutations, the hyperactivation of the nuclear factor NF-κB contributes to tumor growth and survival. METHODS: In the present study, we used publicly available data for the in silico analysis of NF-κB subunits (RELA, RELB, REL, NF-κB1, and NF-κB2) expression in PA samples. Besides, in vitro assays were performed to evaluate proliferation, migration, cell death, on the PA cell line Res286 comparing to human primary astrocytes. Sensitization to radiation therapy and temozolomide (TMZ) was also assayed. RESULTS: Our results showed that all the members of the NF-kB family are upregulated in PA datasets compared to normal brain tissues. Moreover, DHMEQ treatment significantly reduced cell growth and motility, while sensitized cells to ionizing radiation and TMZ, as previously seen in high-grade gliomas. CONCLUSIONS: This drug presents a potential application in clinical practice for the treatment of recurrent or inoperable PA. Moreover, its use might assist adjuvant chemotherapy and reduce irradiation doses to avoid toxicity to the surrounding tissues.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Astrocitoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células , Criança , Humanos , NF-kappa B , Temozolomida/farmacologia
2.
Bone Marrow Transplant ; 52(2): 245-251, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27643869

RESUMO

Recombinant human soluble thrombomodulin (rTM) counteracted capillary leakage and alleviated edema in individuals with sinusoidal obstruction syndrome and engraftment syndrome after hematopoietic stem cell transplantation. We previously showed that rTM increased levels of antiapoptotic protein Mcl-1 and protected endothelial cells from calcineurin inhibitor cyclosporine A (CsA)-induced apoptosis. However, the molecular mechanisms by which rTM enhances barrier function in vascular endothelial cells remain unknown. Here we show that exposure of vascular endothelial EA.hy926 cells to CsA induced phosphorylation of Src/vascular endothelial cadherin (VE-cadherin) and translocation of VE-cadherin from cell surface to cytoplasm, resulting in an increase in vascular permeability. In addition, CsA increased production of inflammatory cytokines, including interleukin (IL)-1ß and IL-6, associated with an increase in nuclear levels of nuclear factor-κB (NF-κB) which also enhanced vascular permeability. Importantly, the fourth and fifth regions of epidermal growth factor-like domain of TM (TME45) attenuated CsA-induced p-Src/VE-cadherin and vascular permeability in parallel with a decrease in nuclear levels of NF-κB and cytokine production in EA.hy926 cells. In conclusion, TM, especially TME45, maintains vascular integrity, at least in part, via Src signaling.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Inibidores de Calcineurina/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Ciclosporina/farmacologia , Trombomodulina/administração & dosagem , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Feminino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo
4.
Br J Cancer ; 110(12): 2965-74, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24867687

RESUMO

BACKGROUND: Although T-cell immunity is thought to be involved in the prognosis of epithelial ovarian cancer (EOC) patients, immunosuppressive conditions hamper antitumour immune responses. Thus, their mechanisms and overcoming strategies need to be investigated. METHODS: The role of NF-κB in human EOC cells and macrophages was evaluated by in vitro production of immunosuppressive IL-6 and IL-8 by EOC cells and in vivo analysis of immune responses in nude mice implanted with human EOC cells using an NF-κB inhibitor DHMEQ. RESULTS: In EOC patients, increased plasma IL-6, IL-8, and arginase were observed. The NF-κB inhibitor DHMEQ inhibited the production of IL-6 and IL-8 by EOC cell lines. Immunosuppression of human DCs and macrophages by culture supernatant of EOC cells was reversed with the pretreatment of DHMEQ. Administration of DHMEQ to nude mice implanted with human EOC resulted in the restoration of T-cell stimulatory activity of murine DCs along with the reduction of tumour accumulation and arginase expression of MDSCs. Nuclear factor-κB inhibition in tumour-bearing mice also enhanced antitumour effects of transferred murine naive T cells. CONCLUSIONS: NF-κB is involved in the immunosuppression induced by human EOC, and its inhibitor may restore antitumour immune responses, indicating that NF-κB is an attractive target for EOC treatment.


Assuntos
Tolerância Imunológica , Interleucina-6/imunologia , Interleucina-8/imunologia , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Ovarianas/imunologia , Fator de Transcrição RelA/imunologia , Transferência Adotiva , Animais , Arginase/sangue , Benzamidas/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Cicloexanonas/farmacologia , Células Dendríticas/imunologia , Feminino , Humanos , Interleucina-6/biossíntese , Interleucina-6/sangue , Interleucina-8/biossíntese , Interleucina-8/sangue , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Transdução de Sinais/imunologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Transplante Heterólogo
5.
Biomed Pharmacother ; 67(5): 363-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23602049

RESUMO

The expression profiling analysis of inflammatory chemokines and their receptors in newly formed lymph nodes in breast cancer was carried out. The analysis revealed the increase in expression of the genes CCL16, XCR1, CYFIP2, TNFSF14 and the reduction in expression of chemokine ligands CXCL5 and CXCL12 in tertiary lymphoid organs. The obtained results allow us to suggest that the process of induction of lymph nodes neogenesis is identical (in its key mechanisms) to the process of lymphoid tissue neogenesis in autoimmune diseases and in some infections, but may have different triggers.


Assuntos
Neoplasias da Mama/metabolismo , Quimiocinas/metabolismo , Linfonodos/metabolismo , Receptores de Quimiocinas/metabolismo , Adulto , Idoso , Neoplasias da Mama/patologia , Quimiocinas/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Tecido Linfoide/metabolismo , Pessoa de Meia-Idade , Organogênese/fisiologia , Receptores de Quimiocinas/genética
6.
Chemother Res Pract ; 2013: 593020, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533755

RESUMO

Despite advances in neurosurgery and aggressive treatment with temozolomide (TMZ) and radiation, the overall survival of patients with glioblastoma (GBM) remains poor. Vast evidence has indicated that the nuclear factor NF- κ B is constitutively activated in cancer cells, playing key roles in growth and survival. Recently, Dehydroxymethylepoxyquinomicin (DHMEQ) has shown to be a selective NF- κ B inhibitor with antiproliferative properties in GBM. In the present study, the ability of DHMEQ to surmount tumor's invasive nature and therapy resistance were further explored. Corroborating results showed that DHMEQ impaired cell growth in dose- and time-dependent manners with G2/M arrest when compared with control. Clonogenicity was also significantly diminished with increased apoptosis, though necrotic cell death was also observed at comparable levels. Notably, migration and invasion were inhibited accordingly with lowered expression of invasion-related genes. Moreover, concurrent combination with TMZ synergistically inhibited cell growth in all cell lines, as determined by proliferation and caspase-3 activation assays, though in those that express O(6)-methylguanine-DNA methyltransferase, the synergistic effects were schedule dependent. Pretreatment with DHMEQ equally sensitized cells to ionizing radiation. Taken together, our results strengthen the potential usefulness of DHMEQ in future therapeutic strategies for tumors that do not respond to conventional approaches.

7.
Br J Cancer ; 107(4): 652-7, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22805327

RESUMO

BACKGROUND: Inducible activation of nuclear factor (NF)-κB is one of the principal mechanisms through which resistant prostate cancer cells are protected from radiotherapy. We hypothesised that inactivation of inducible NF-κB with a novel NF-κB inhibitor, DHMEQ, would increase the therapeutic effects of radiotherapy. METHODS: PC-3 and LNCaP cells were exposed to irradiation and/or DHMEQ. Cell viability, cell cycle analysis, western blotting assay, and NF-κB activity were measured. The antitumour effect of irradiation combined with DHMEQ in vivo was also assessed. RESULTS: The combination of DHMEQ with irradiation resulted in cell growth inhibition and G2/M arrest relative to treatment with irradiation alone. Inducible NF-κB activity by irradiation was inhibited by DHMEQ treatment. The expression of p53 and p21 in LNCaP, and of 14-3-3σ in PC-3 cells, was increased in the combination treatment. In the in vivo study, 64 days after the start of treatment, tumour size was 85.1%, 77.1%, and 64.7% smaller in the combination treatment group than that of the untreated control, DHMEQ-treated alone, and irradiation alone groups, respectively. CONCLUSION: Blockade of NF-κB activity induced by radiation with DHMEQ could overcome radio-resistant responses and may become a new therapeutic modality for treating prostate cancer.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/farmacologia , Cicloexanonas/farmacologia , NF-kappa B/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/farmacologia , Benzamidas/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cicloexanonas/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Nus , Tolerância a Radiação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Clin Exp Allergy ; 42(8): 1273-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22805475

RESUMO

BACKGROUND: Dehydroxymethylepoxyquinomicin (DHMEQ) is a newly developed compound that inhibits nuclear factor κB activation and is reported to ameliorate animal models of various inflammatory diseases without significant adverse effects. Because nuclear factor κB is a transcription factor that plays a critical role in the pathophysiology of asthma, DHMEQ may be of therapeutic benefit in asthma. OBJECTIVE: The purpose of this study was to evaluate the effects of DHMEQ on airway inflammation and remodelling in murine models of asthma. METHODS: The BALB/c mice were sensitized and then challenged acutely or chronically with ovalbumin and administered DHMEQ intraperitoneally before each challenge. Inflammation of airways, lung histopathology and airway hyper responsiveness to methacholine challenge were evaluated. In addition, the effect of DHMEQ on production of cytokines and eotaxin-1 by murine splenocytes, human peripheral blood mononuclear cells and bronchial epithelial cells was investigated. RESULTS: Airway hyper responsiveness was ameliorated in both acutely and chronically challenged models by treatment with DHMEQ. DHMEQ significantly reduced eosinophilic airway inflammation and levels of Th2 cytokines in bronchoalveolar lavage fluid in the acute model. It also inhibited parameters of airway remodelling including mucus production, peribronchial fibrosis and the expression of α-smooth muscle actin. Moreover, the production of Th2 cytokines from murine splenocytes and human peripheral blood mononuclear cells and the production of eotaxin-1 by bronchial epithelial cells were inhibited by DHMEQ. CONCLUSIONS AND CLINICAL RELEVANCE: These results indicate that DHMEQ inhibits allergic airway inflammation and airway remodelling in murine models of asthma. DHMEQ may have therapeutic potential in the treatment of asthma.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/tratamento farmacológico , Benzamidas/farmacologia , Cicloexanonas/farmacologia , Inflamação/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Animais , Asma/metabolismo , Asma/patologia , Benzamidas/administração & dosagem , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Cicloexanonas/administração & dosagem , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Eosinófilos/imunologia , Eosinófilos/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/metabolismo
9.
Phys Rev Lett ; 108(3): 037002, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400776

RESUMO

We have performed high-resolution angle-resolved photoemission spectroscopy on Fe-based superconductor LiFeAs (T(c)=18 K). We reveal multiple nodeless superconducting (SC) gaps with 2Δ/k(B)T(c) ratios varying from 2.8 to 6.4, depending on the Fermi surface (FS). We also succeeded in directly observing a gap anisotropy along the FS with magnitude up to ~30%. The anisotropy is fourfold symmetric with an antiphase between the hole and electron FSs, suggesting complex anisotropic interactions for the SC pairing. The observed momentum dependence of the SC gap offers an excellent opportunity to investigate the underlying pairing mechanism.

10.
Oncogene ; 31(37): 4139-49, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22158046

RESUMO

The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases, is expressed in up to 70% of epithelial ovarian cancers (EOCs), where it correlates with poor prognosis. The majority of EOCs are diagnosed at an advanced stage, and at least 50% present malignant ascites. High levels of IL-6 have been found in the ascites of EOC patients and correlate with shorter survival. Herein, we investigated the signaling cascade led by EGFR activation in EOC and assessed whether EGFR activation could induce an EOC microenvironment characterized by pro-inflammatory molecules. In vitro analysis of EOC cell lines revealed that ligand-stimulated EGFR activated NFkB-dependent transcription and induced secretion of IL-6 and plasminogen activator inhibitor (PAI-1). IL-6/PAI-1 expression and secretion were strongly inhibited by the tyrosine kinase inhibitor AG1478 and EGFR silencing. A significant reduction of EGF-stimulated IL-6/PAI-1 secretion was also obtained with the NFkB inhibitor dehydroxymethylepoxyquinomicin. Of 23 primary EOC tumors from advanced-stage patients with malignant ascites at surgery, 12 co-expressed membrane EGFR, IL-6 and PAI-1 by immunohistochemistry; both IL-6 and PAI-1 were present in 83% of the corresponding ascites. Analysis of a publicly available gene-expression data set from 204 EOCs confirmed a significant correlation between IL-6 and PAI-1 expression, and patients with the highest IL-6 and PAI-1 co-expression showed a significantly shorter progression-free survival time (P=0.028). This suggests that EGFR/NFkB/IL-6-PAI-1 may have a significant impact on the therapy of a particular subset of EOC, and that IL-6/PAI-1 co-expression may be a novel prognostic marker.


Assuntos
Receptores ErbB/metabolismo , Interleucina-6/biossíntese , NF-kappa B/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Benzamidas/farmacologia , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Cicloexanonas/farmacologia , Intervalo Livre de Doença , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Humanos , Interleucina-6/metabolismo , NF-kappa B/antagonistas & inibidores , Neoplasias Epiteliais e Glandulares/mortalidade , Neoplasias Ovarianas/mortalidade , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Quinazolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Microambiente Tumoral , Tirfostinas/farmacologia
11.
Clin Exp Immunol ; 166(2): 299-306, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21985376

RESUMO

Dehydroxymethylepoxyquinomicin (DHMEQ), a new nuclear factor (NF)-κB inhibitor, has several beneficial effects, including the suppression of tumour growth and anti-inflammatory effects. DHMEQ can also suppress the production of tumour necrosis factor (TNF)-α induced by lipopolysaccharide (LPS) in vitro. In the present study, we examine the effects of DHMEQ on TNF-α production in vivo and on the survival of mice injected with LPS. When DHMEQ was injected into mice 2 h before LPS injection, the survival of the LPS-injected mice was prolonged. When DHMEQ was injected twice (2 h before LPS injection and the day after LPS injection), all the mice were rescued. The injection of DHMEQ 1 h after LPS injection and the day after LPS injection also resulted in the rescue of all mice. The serum levels of TNF-α in the mice that received both LPS and DHMEQ were suppressed compared to the mice that received only LPS. These results suggest that DHMEQ can be utilized for the prevention and treatment of endotoxin shock.


Assuntos
Benzamidas/farmacologia , Cicloexanonas/farmacologia , Choque Séptico/tratamento farmacológico , Choque Séptico/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Apoptose/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque Séptico/prevenção & controle , Baço/citologia , Fator de Necrose Tumoral alfa/sangue
12.
Biomed Pharmacother ; 65(4): 252-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21723080

RESUMO

NF-κB is a transcription factor and considered to be involved in the mechanisms of inflammation and cancer. We have designed the new NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ), which directly binds to a specific cysteine residue of Rel family proteins to inhibit their DNA-binding activity. DHMEQ showed potent anti-inflammatory and anticancer activities in many animal models. So far DHMEQ has been administered mainly into the peritoneal cavity of animals. According to the limited distribution of DHMEQ in the peritoneal cavity after intraperitoneal administration, it is likely that NF-κB in the peritoneal cells would be the main target of DHMEQ. Therefore, the inflammatory cells in the peritoneal cavity appear important for the regulation of peripheral inflammation and tumor growth in the body, and peritoneal NF-κB may be an important target for anti-inflammatory and anticancer agents in future.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Cicloexanonas/farmacologia , NF-kappa B/antagonistas & inibidores , Neoplasias/imunologia , Peritônio/imunologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Benzamidas/química , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Cicloexanonas/química , Cicloexanonas/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Estrutura Molecular , NF-kappa B/biossíntese , Neoplasias/tratamento farmacológico , Peritônio/efeitos dos fármacos
13.
Cell Death Differ ; 17(7): 1211-20, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20139893

RESUMO

Abl tyrosine kinase inhibitors (TKIs) such as imatinib and dasatinib are ineffective against Bcr-Abl(+) leukemic stem cells. Thus, the identification of novel agents that are effective in eradicating quiescent Bcr-Abl(+) stem cells is needed to cure leukemias caused by Bcr-Abl(+) cells. Human Bcr-Abl(+) cells engrafted in the bone marrow of immunodeficient mice survive under severe hypoxia. We generated two hypoxia-adapted (HA)-Bcr-Abl(+) sublines by selection in long-term hypoxic cultures (1.0% O(2)). Interestingly, HA-Bcr-Abl(+) cells exhibited stem cell-like characteristics, including more cells in a dormant, increase of side population fraction, higher beta-catenin expression, resistance to Abl TKIs, and a higher transplantation efficiency. Compared with the respective parental cells, HA-Bcr-Abl(+) cells had higher levels of protein and higher enzyme activity of glyoxalase-I (Glo-I), an enzyme that detoxifies methylglyoxal, a cytotoxic by-product of glycolysis. In contrast to Abl TKIs, Glo-I inhibitors were much more effective in killing HA-Bcr-Abl(+) cells both in vitro and in vivo. These findings indicate that Glo-I is a novel molecular target for treatment of Bcr-Abl(+) leukemias, and, in particular, Abl TKI-resistant quiescent Bcr-Abl(+) leukemic cells that have acquired stem-like characteristics in the process of adapting to a hypoxic environment.


Assuntos
Lactoilglutationa Liase/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Benzamidas , Hipóxia Celular , Linhagem Celular Tumoral , Dasatinibe , Humanos , Mesilato de Imatinib , Lactoilglutationa Liase/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Camundongos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Tiazóis/farmacologia , Transplante Heterólogo , beta Catenina/metabolismo
14.
Biomed Pharmacother ; 64(3): 226-31, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20079600

RESUMO

We previously found that conophylline, an alkaloid isolated from the leaves of Ervatamia microphylla, induced beta-cell differentiation in rat pancreatic acinar carcinoma cells and in cultured fetal rat pancreatic tissue and that it also decreased the blood glucose level in streptozotocin-treated fetal rats. In the present research, we looked into the effect of conophylline on the differentiation of newborn pig pancreatic endocrine cells into insulin-secreting cells. Conophylline potentiated the differentiation of monolayer cells into insulin-producing cells in the presence of nicotinamide in 3 weeks. Next we prepared islet-like cell clusters (ICC). Cononophylline together with nicotinamide also increased the number of insulin-producing cells and the insulin content in ICC in 3-6 weeks. The ICC thus prepared were sensitive to the glucose concentration for the insulin secretion. Conophylline increased the mRNA expression of PDX-1, neurogenin3, neuroD/Beta2, and insulin in ICC. Thus, the vinca alkaloid conophylline potentiated beta-cell differentiation in porcine pancreatic endocrine-rich cells in cluster cultures. Pig pancreatic cells are practical candidate for use in transplantation therapy. Conophylline may thus be useful for the large-scale preparation of porcine insulin-producing cells for the regeneration therapy of type-1 diabetes mellitus.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Alcaloides de Vinca/farmacologia , Animais , Animais Recém-Nascidos , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Estrutura Molecular , Niacinamida/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sus scrofa , Suínos , Alcaloides de Vinca/química
15.
Br J Cancer ; 102(1): 206-12, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19997106

RESUMO

BACKGROUND: Tumour-initiating cells (TICs) or cancer stem cells can exist as a small population in malignant tissues. The signalling pathways activated in TICs that contribute to tumourigenesis are not fully understood. METHODS: Several breast cancer cell lines were sorted with CD24 and CD44, known markers for enrichment of breast cancer TICs. Tumourigenesis was analysed using sorted cells and total RNA was subjected to gene expression profiling and gene set enrichment analysis (GSEA). RESULTS: We showed that several breast cancer cell lines have a small population of CD24(-/low)/CD44(+) cells in which TICs may be enriched, and confirmed the properties of TICs in a xenograft model. GSEA revealed that CD24(-/low)/CD44(+) cell populations are enriched for genes involved in transforming growth factor-beta, tumour necrosis factor, and interferon response pathways. Moreover, we found the presence of nuclear factor-kappaB (NF-kappaB) activity in CD24(-/low)/CD44(+) cells, which was previously unrecognised. In addition, NF-kappaB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) prevented tumourigenesis of CD24(-/low)/CD44(+) cells in vivo. CONCLUSION: Our findings suggest that signalling pathways identified using GSEA help to identify molecular targets and biomarkers for TIC-like cells.


Assuntos
Neoplasias da Mama/patologia , Antígeno CD24/análise , Separação Celular/métodos , Perfilação da Expressão Gênica , Receptores de Hialuronatos/análise , Proteínas de Neoplasias/análise , Células-Tronco Neoplásicas/fisiologia , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Biomarcadores , Neoplasias da Mama/genética , Cicloexanonas/farmacologia , Cicloexanonas/uso terapêutico , Feminino , Vetores Genéticos/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/antagonistas & inibidores , NF-kappa B/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/química , Células-Tronco Neoplásicas/transplante , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/fisiologia , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncogene ; 26(42): 6184-93, 2007 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-17420722

RESUMO

Rituximab (chimeric anti-CD20 monoclonal antibody) is currently being used, alone or in combination with chemotherapy, in the treatment of B-non-Hodgkin's lymphoma (B-NHL). We have reported that rituximab treatment of B-NHL cell lines sensitizes the drug-resistant tumor cells to apoptosis by various chemotherapeutic drugs and chemosensitization was, in large part, owing to the selective inhibition of the anti-apoptotic Bcl-(XL) gene product. The constitutive activation of the Akt pathway in B-NHL results in overexpression and functional activation of Bcl-(xL). Hence, we hypothesized that rituximab-induced inhibition of Bcl-(xL) expression and chemosensitization may result, in part, from its inhibitory activity of the Akt pathway. This hypothesis was tested using the drug-resistant Ramos and Daudi B-NHL cell lines. Time kinetic analysis revealed that treatment with rituximab inhibited phosphorylation of Akt, but not unphosphorylated Akt, and the inhibition was first detected at 6 h post-rituximab treatment. Similar time kinetics revealed rituximab-induced inhibition of p-PDK1, p-Bad, p-IKKalpha/beta and p-Ikappabetaalpha and no inhibition of unphosphorylated proteins. In addition, rituximab treatment resulted in significant increase of Bcl-(xL)-Bad heterodimeric complexes as compared to untreated cells. The role of the Akt pathway in the regulation of resistance was corroborated by the use of the Akt inhibitor, LY294002, and by transfection with siRNA Akt. Treatment of tumor cells with LY294002 or with Akt siRNA, but not control siRNA, resulted in inhibition of Bcl-(xL) expression and sensitization to drug-induced apoptosis. Although rituximab did not inhibit the Akt pathway nor sensitized the rituximab-resistant Ramos RR1 clone, treatment with LY294002 or Akt siRNA sensitized the clone to drug-induced apoptosis. The present findings demonstrate for the first time that rituximab inhibits the constitutively activated Akt pathway in B-NHL cell lines, and this inhibition contributes to sensitization of drug-resistant cells to apoptosis by chemotherapeutic drugs. The findings also identify the Akt pathway as target for therapeutic intervention in the reversal of rituximab and drug-resistant B-NHL.


Assuntos
Anticorpos Monoclonais/fisiologia , Apoptose/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Linfoma de Células B/enzimologia , Linfoma de Células B/imunologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/imunologia , Anticorpos Monoclonais Murinos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Linfoma de Células B/tratamento farmacológico , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Rituximab , Transdução de Sinais/efeitos dos fármacos
17.
Biomed Pharmacother ; 60(9): 578-86, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16978829

RESUMO

Previously, we designed and synthesized a new NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ). In the present research we looked into the effect of DHMEQ on the activation of macrophages, especially on the phagocytotic activity of cells of the mouse macrophage-like cell line RAW264.7. DHMEQ inhibited lipopolysaccharide (LPS)-induced NF-kappaB activation by inhibiting its nuclear translocation from the cytoplasm. It also inhibited the expression of inducible NO synthase (iNOS) and nitric oxide (NO) production induced by LPS and interferon-gamma. Using enzyme-linked immunosorbent assays (ELISAs) we showed DHMEQ to inhibit LPS-induced secretion of IL-6, IL-12, interleukin-1beta (IL-1beta), and TNF-alpha. Furthermore, DHMEQ also inhibited the phagocytosis of fluorescently labeled Escherichia coli by RAW264.7 cells treated with LPS or IL-1beta, thus being the first evidence for the involvement of NF-kappaB in the regulation of phagocytosis by use of this inhibitor. Deletion of p65 by siRNA also inhibited the phagocytosis. DHMEQ inhibited the LPS-induced but not IL-1beta-induced phagocytosis of glass beads, indicating that activation of not only NF-kappaB but also Toll-like receptor 4 (TLR-4) is essential for the phagocytosis of E. coli. Previously we found that DHMEQ inhibited type 2 collagen-induced rheumatoid arthritis and the growth of various human carcinomas in mice. It is thus likely that inhibition of macrophage activation is involved in the mechanism of these anti-inflammatory and antitumor activities of DHMEQ in mice.


Assuntos
Benzamidas/farmacologia , Cicloexanonas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Fagocitose/efeitos dos fármacos , Animais , Células Cultivadas , Citocinas/biossíntese , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Receptor 4 Toll-Like/fisiologia
18.
Leukemia ; 20(5): 800-6, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16525497

RESUMO

Chronic lymphocytic leukemia (CLL) is a low-grade lymphoid malignancy incurable with conventional modalities of chemotherapy. Strong and constitutive nuclear factor kappa B (NF-kappaB) activation is a characteristic of CLL cells. We examined the effects of a new NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on CLL cells. Dehydroxymethylepoxyquinomicin completely abrogated constitutive NF-kappaB activity and induced apoptosis of CLL cells. Apoptosis induced by DHMEQ was accompanied by downregulation of NF-kappaB-dependent antiapoptotic genes: c-IAP, Bfl-1, Bcl-X(L) and c-FLIP. Dehydroxymethylepoxyquinomicin also inhibited NF-kappaB induced by CD40 and enhanced fludarabine-mediated apoptosis of CLL cells. Results of this study suggest that inhibition of constitutive and inducible NF-kappaB by DHMEQ in combination with fludarabine is a promising strategy for the treatment of CLL.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Cicloexanonas/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Vidarabina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Antígenos CD40/efeitos dos fármacos , Caspases/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Feminino , Humanos , Proteínas Inibidoras de Apoptose/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Tumorais Cultivadas , Vidarabina/farmacologia , Proteína bcl-X/efeitos dos fármacos , Proteína bcl-X/metabolismo
19.
Biomed Pharmacother ; 59(6): 318-22, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15932789

RESUMO

Activation of microglia has been implicated in various neurodegenerative disorders, and thus the inhibition of microglial activity may suppress these disorders. Earlier we designed and synthesized an NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ) that showed anti-inflammatory and anti-tumor activities in vivo. In the present research, we studied whether DHMEQ would inhibit the activation of mouse microglial cells. DHMEQ inhibited lipopolysaccharide (LPS)-induced activation of NF-kappaB in an electrophoresis mobility shift assay. It also inhibited LPS-induced secretions of TNF-alpha and IL-6 from mouse microglial cell line 6-1 cells.


Assuntos
Benzamidas/farmacologia , Cicloexanonas/farmacologia , Citocinas/metabolismo , Microglia/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/citologia , Microglia/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Cell Mol Life Sci ; 60(11): 2516-25, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14625694

RESUMO

In the course of screening for inhibitors of transforming-growth factor-beta (TGF-beta) functions we found that conophylline, a vinca alkaloid, inhibited TGF-beta-induced apoptosis in rat hepatoma cells. Because conophylline also inhibited TGF-b-induced promoter activity in mink lung cells, we studied the mechanism of the inhibition in this cell line. Conophylline did not inhibit nuclear translocation of Smad2. Instead, we found that conophylline increased the expression of c-Jun, which had been earlier shown to interact with the corepressor TGIF to suppress the transcriptional activity dependent on Smad2. Conophylline attenuated the interaction between the Smad2 complex and p300 but enhanced that between the Smad2 complex and TGIF. In cells overexpressing c-Jun, suppression of promoter activity induced by TGF-beta and the enhancement of the association of the Smad2 complex with TGIF were also observed. Thus, our data suggest that inhibition of TGF-beta-induced promoter activity by conophylline can be attributed to its potency in modulating the interaction of downstream transcriptional factors via upregulation of c-Jun expression.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Genes jun , Fator de Crescimento Transformador beta/antagonistas & inibidores , Alcaloides de Vinca/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Transporte Proteico/efeitos dos fármacos , Ratos , Proteína Smad2 , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...