Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(42): 15645-15655, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831755

RESUMO

The quartz crystal microbalance with dissipation (QCM-D) has become an efficient and versatile measurement technique for investigating in situ the external stimuli responsiveness such as pH, temperature, or chemical gradients of surface-active substances at solid-liquid interfaces. However, light responsive adsorption investigation is more challenging presumably since the quartz crystal itself reacts to optical stimulation, showing frequency and dissipation shifts known as light induced detuning (LID). This yields an effective measurement artifact and makes data interpretation with respect to dynamic interactions of light responsive materials rather challenging. Here we introduce a simple guideline for correcting the artifacts of the QCM sensor response on irradiation to ensure quantitative analysis for light responsive materials via OCM-D. We also show that the LID depends on the adsorption properties of the sensor and the solvent properties (ionic concentration or viscosity), providing a guideline to minimize impact of the LID.

2.
ACS Appl Mater Interfaces ; 14(36): 41412-41420, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36006795

RESUMO

Here, we establish different ways of light-triggered droplet manipulation such as reversible wetting, splitting, merging, and transport. The unique features of our approach are that the changes in the wetting properties of microscopic droplets of isotropic (oil) or anisotropic (liquid crystalline) liquids adsorbed on photoswitchable films can be triggered just by application of soft optical stimuli, which lead to dynamical, reversible changes in the local morphology of the structured surfaces. The adaptive films consist of an azobenzene-containing surfactant ionically attached to oppositely charged polymer chains. Under exposure to irradiation with light, the azobenzene photoisomerizes between two states, nonpolar trans-isomer and polar cis-isomer, resulting in the corresponding changes in the surface energy and orientation of the surfactant tails at the interface. Additionally, the local increase in the surface temperature due to absorption of light by the azobenzene groups enables diverse processes of manipulation of the adsorbed small droplets, such as the reversible increase of the droplet basal area up to 5 times, anisotropic wetting during irradiation with modulated light, and precise partition of the droplet into many small pieces, which can then be merged on demand to the desired number of larger droplets. Moreover, using a moving focused light spot, we experimentally demonstrate and theoretically explain the locomotion of the droplet over macroscopic distances with a velocity of up to 150 µm·s-1. Our findings could lead to the ultimate application of a programmable workbench for manipulating and operating an ensemble of droplets, just using simple and gentle optical stimuli.

3.
Eur Phys J E Soft Matter ; 44(4): 50, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33834353

RESUMO

We consider sedimented at a solid wall particles that are immersed in water containing small additives of photosensitive ionic surfactants. It is shown that illumination with an appropriate wavelength, a beam intensity profile, shape and size could lead to a variety of dynamic, both unsteady and steady state, configurations of particles. These dynamic, well-controlled and switchable particle patterns at the wall are due to an emerging diffusio-osmotic flow that takes its origin in the adjacent to the wall electrostatic diffuse layer, where the concentration gradients of surfactant are induced by light. The conventional nonporous particles are passive and can move only with already generated flow. However, porous colloids actively participate themselves in the flow generation mechanism at the wall, which also sets their interactions that can be very long ranged. This light-induced diffusio-osmosis opens novel avenues to manipulate colloidal particles and assemble them to various patterns. We show in particular how to create and split optically the confined regions of particles of tunable size and shape, where well-controlled flow-induced forces on the colloids could result in their crystalline packing, formation of dilute lattices of well-separated particles, and other states.

4.
Langmuir ; 36(46): 14009-14018, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33182998

RESUMO

We report on the adsorption kinetics of azobenzene-containing surfactants on solid surfaces of different hydrophobicity. The understanding of this processes is of great importance for many interfacial phenomena that can be actuated and triggered by light, since the surfactant molecules contain a photoresponsive azobenzene group in their hydrophobic tail. Three surfactant types are studied, differing in the spacer connecting the headgroup and the azobenzene unit by between 6 and 10 CH2 groups. Under irradiation with light of a suitable wavelength, the azobenzene undergoes reversible photoisomerization between two states, a nonpolar trans-state and a highly polar cis-state. Consequently, the surfactant molecule changes its hydrophobicity and thus affinity to a surface depending on the photoisomerization state of the azobenzene. The adsorption behavior on hydrophilic (glass) and hydrophobic (TeflonAF) surfaces is analyzed using quartz crystal microbalance with dissipation (QCM-D) and ζ-potential measurements. At equilibrium, the adsorbed surfactant amount is almost twice as large on glass compared to TeflonAF for both isomers. The adsorption rate for the trans-isomers on both surfaces is similar, but the desorption rate of the trans-isomers is faster at the glass-water interface than at the Teflon-water interface. This result demonstrates that the trans-isomers have higher affinity for the glass surface, so the trans-to-cis ratios on glass and TeflonAF are 80/1 and 2/1, respectively, with similar trends for all three surfactant types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...