Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 7(5): 401-10, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490503

RESUMO

A novel methodology is described in which transcriptomics is combined with the measurement of bread-making quality and other agronomic traits for wheat genotypes grown in different environments (wet and cool or hot and dry conditions) to identify transcripts associated with these traits. Seven doubled haploid lines from the Spark x Rialto mapping population were selected to be matched for development and known alleles affecting quality. These were grown in polytunnels with different environments applied 14 days post-anthesis, and the whole experiment was repeated over 2 years. Transcriptomics using the wheat Affymetrix chip was carried out on whole caryopsis samples at two stages during grain filling. Transcript abundance was correlated with the traits for approximately 400 transcripts. About 30 of these were selected as being of most interest, and markers were derived from them and mapped using the population. Expression was identified as being under cis control for 11 of these and under trans control for 18. These transcripts are candidates for involvement in the biological processes which underlie genotypic variation in these traits.


Assuntos
Perfilação da Expressão Gênica/métodos , Característica Quantitativa Herdável , Sementes/genética , Triticum/genética , Produtos Agrícolas/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Haploidia , RNA de Plantas/genética
2.
BMC Genomics ; 9: 121, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18325108

RESUMO

BACKGROUND: Hexaploid wheat is one of the most important cereal crops for human nutrition. Molecular understanding of the biology of the developing grain will assist the improvement of yield and quality traits for different environments. High quality transcriptomics is a powerful method to increase this understanding. RESULTS: The transcriptome of developing caryopses from hexaploid wheat (Triticum aestivum, cv. Hereward) was determined using Affymetrix wheat GeneChip oligonucleotide arrays which have probes for 55,052 transcripts. Of these, 14,550 showed significant differential regulation in the period between 6 and 42 days after anthesis (daa). Large changes in transcript abundance were observed which were categorised into distinct phases of differentiation (6-10 daa), grain fill (12-21 daa) and desiccation/maturation (28-42 daa) and were associated with specific tissues and processes. A similar experiment on developing caryopses grown with dry and/or hot environmental treatments was also analysed, using the profiles established in the first experiment to show that most environmental treatment effects on transcription were due to acceleration of development, but that a few transcripts were specifically affected. Transcript abundance profiles in both experiments for nine selected known and putative wheat transcription factors were independently confirmed by real time RT-PCR. These expression profiles confirm or extend our knowledge of the roles of the known transcription factors and suggest roles for the unknown ones. CONCLUSION: This transcriptome data will provide a valuable resource for molecular studies on wheat grain. It has been demonstrated how it can be used to distinguish general developmental shifts from specific effects of treatments on gene expression and to diagnose the probable tissue specificity and role of transcription factors.


Assuntos
Perfilação da Expressão Gênica/métodos , Poliploidia , Sementes/genética , Triticum/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...