Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 8(17): eabl9185, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476443

RESUMO

At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterizing the mechanisms of coral resilience to climate change. To explore these mechanisms in the reef coral Acropora tenuis, we collected samples from lagoon and reef slope habitats and combined whole-genome sequencing, ITS2 metabarcoding, experimental heat stress, and transcriptomics. Despite high gene flow across the atoll, we identified clear shifts in allele frequencies between habitats at relatively small linked genomic islands. Common garden heat stress assays showed corals from the lagoon to be more resistant to bleaching, and RNA sequencing revealed marked differences in baseline levels of gene expression between habitats. Our results provide new insight into the complex mechanisms of coral resilience to climate change and highlight the potential for spatially varying selection across complex coral reef seascapes to drive pronounced ecological divergence in climate-related traits.

2.
Evol Appl ; 13(9): 2404-2421, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005230

RESUMO

Management strategies designed to conserve coral reefs threatened by climate change need to incorporate knowledge of the spatial distribution of inter- and intra-specific genetic diversity. We characterized patterns of genetic diversity and connectivity using single nucleotide polymorphisms (SNPs) in two reef-building corals to explore the eco-evolutionary processes that sustain populations in north-west Australia. Our sampling focused on the unique reefs of the Kimberley; we collected the broadcast spawning coral Acropora aspera (n = 534) and the brooding coral Isopora brueggemanni (n = 612) across inter-archipelago (tens to hundreds of kilometres), inter-reef (kilometres to tens of kilometres) and within-reef (tens of metres to a few kilometres) scales. Initial analysis of A. aspera identified four highly divergent lineages that were co-occurring but morphologically similar. Subsequent population analyses focused on the most abundant and widespread lineage, Acropora asp-c. Although the overall level of geographic subdivision was greater in the brooder than in the spawner, fundamental similarities in patterns of genetic structure were evident. Most notably, limits to gene flow were observed at scales <35 kilometres. Further, we observed four discrete clusters and a semi-permeable barrier to dispersal that were geographically consistent between species. Finally, sites experiencing bigger tides were more connected to the metapopulation and had greater gene diversity than those experiencing smaller tides. Our data indicate that the inshore reefs of the Kimberley are genetically isolated from neighbouring oceanic bioregions, but occasional dispersal between inshore archipelagos is important for the redistribution of evolutionarily important genetic diversity. Additionally, these results suggest that networks of marine reserves that effectively protect reefs from local pressures should be spaced within a few tens of kilometres to conserve the existing patterns of demographic and genetic connectivity.

3.
Mol Phylogenet Evol ; 132: 183-193, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30528081

RESUMO

Coral reef health and biodiversity is under threat worldwide due to rapid climate change. However, much of the inter- and intra-specific diversity of coral reefs are undescribed even in well studied taxa such as fish. Delimiting previously unrecognised diversity is important for understanding the processes that generate and sustain biodiversity in coral reef ecosystems and informing strategies for their conservation and management. Many taxa that inhabit geographically isolated coral reefs rely on self-recruitment for population persistence, providing the opportunity for the evolution of unique genetic lineages through divergent selection and reproductive isolation. Many such lineages in corals and fish are morphologically similar or indistinguishable. Here, we report the discovery and characterisation of cryptic lineages of the Wolf Cardinalfish, Cheilodipterus artus, from the coral atolls of northwest Australia using multiple molecular markers from mitochondrial (CO1 and D-loop) and nuclear (microsatellites) DNA. Concordant results from all markers identified two highly divergent lineages that are morphologically cryptic and reproductively isolated. These lineages co-occurred at daytime resting sites, but the relative abundance of each lineage was strongly correlated with wave exposure. It appears, therefore, that fish from each lineage are better adapted to different microhabitats. Such cryptic and ecologically based diversity appears to be common in these atolls and may well aid resilience of these systems. Our results also highlight that underwater surveys based on visual identification clearly underestimate biodiversity, and that a taxonomic revision of the Cheilodipterus genus is necessary.


Assuntos
Perciformes/classificação , Animais , Biodiversidade , Recifes de Corais , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Perciformes/genética , Filogenia
4.
Mol Ecol ; 27(7): 1586-1602, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575282

RESUMO

The predominance of self-recruitment in many reef-building corals has fundamental and complex consequences for their genetic diversity, population persistence and responses to climate change. Knowledge of genetic structure over local scales needs to be placed within a broad spatial context, and also integrated with genetic monitoring through time to disentangle these consequences. Here, we examined patterns of genetic diversity over multiple spatio-temporal scales across tropical Australia in the ubiquitous brooding coral, Seriatopora hystrix. We also analysed complimentary environmental and demographic data to elucidate the seascape drivers of these patterns. Large genetic differences were detected between the east vs. west coasts of Australia. In northwest Australia, geographic differentiation dominated genetic structure over multiple scales. However, three sympatric lineages were detected at the largest offshore reef system (Scott Reef). Similar to the differences observed among putative species in eastern Australia, these lineages were associated with different levels of wave exposure. Local genetic structure within the Scott Reef system was relatively stable over 10 years, but temporal differences were observed that reflected small but important genetic changes over a few generations during recovery after severe bleaching. These results highlight the importance of self-recruitment together with occasional longer distance connectivity for the persistence of a metapopulation across spatially and temporally variable environments. Our multidimensional research provides a foundation for further long-term genetic monitoring to inform conservation strategies and highlights that sampling scales, ecological effects and cryptic diversity are important considerations to develop realistic understanding of the evolutionary resilience of corals.


Assuntos
Antozoários/genética , Perfilação da Expressão Gênica , Animais , Austrália , Análise por Conglomerados , Recifes de Corais , Genótipo , Repetições de Microssatélites/genética , Filogeografia , Análise de Componente Principal , Fatores de Tempo
5.
PLoS One ; 11(3): e0150916, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963249

RESUMO

Coral spawning on the oceanic reef systems of north-western Australia was recently discovered during autumn and spring, but the degree to which species and particularly colonies participated in one or both of these spawnings was unknown. At the largest of the oceanic reef systems, the participation by colonies in the two discrete spawning events was investigated over three years in 13 species of Acropora corals (n = 1,855 colonies). Seven species spawned during both seasons; five only in autumn and one only in spring. The majority of tagged colonies (n = 218) spawned once a year in the same season, but five colonies from three species spawned during spring and autumn during a single year. Reproductive seasonality was not influenced by spatial variation in habitat conditions, or by Symbiodinium partners in the biannual spawner Acropora tenuis. Colonies of A. tenuis spawning during different seasons separated into two distinct yet cryptic groups, in a bayesian clustering analysis based on multiple microsatellite markers. These groups were associated with a major genetic divergence (G"ST = 0.469), despite evidence of mixed ancestry in a small proportion of individuals. Our results confirm that temporal reproductive isolation is a common feature of Acropora populations at Scott Reef and indicate that spawning season is a genetically determined trait in at least A. tenuis. This reproductive isolation may be punctuated occasionally by interbreeding between genetic groups following favourable environmental conditions, when autumn spawners undergo a second annual gametogenic cycle and spawn during spring.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Animais , Austrália , Modelos Biológicos , Reprodução/fisiologia
6.
Ecol Evol ; 2(3): 666-79, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22822442

RESUMO

We utilized a spatial and temporal analyses of genetic structure, supplemented with ecological and oceanographic analysis, to assess patterns of population connectivity in a coral reef fish Chromis margaritifer among the unique and remote atolls in the eastern Indian Ocean. A subtle, but significant genetic discontinuity at 10 microsatellite DNA loci was detected between atoll systems corresponding with a low (≤ 1%) probability of advection across the hundreds of kilometers of open ocean that separates them. Thus, although genetic connections between systems are likely maintained by occasional long-distance dispersal of C. margaritifer larvae, ecological population connectivity at this spatial scale appears to be restricted. Further, within one of these atoll systems, significant spatial differentiation among samples was accompanied by a lack of temporal pairwise differentiation between recruit and adult samples, indicating that restrictions to connectivity also occur at a local scale (tens of kilometers). In contrast, a signal of panmixia was detected at the other atoll system studied. Lastly, greater relatedness and reduced genetic diversity within recruit samples was associated with relatively large differences among them, indicating the presence of sweepstakes reproduction whereby a small proportion of adults contributes to recruitment in the next generation. These results are congruent with earlier work on hard corals, suggesting that local production of larvae drives population replenishment in these atoll systems for a range of coral reef species.

7.
Mol Ecol ; 20(8): 1647-60, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21410573

RESUMO

Approximately one quarter of zooxanthellate coral species have a depth distribution from shallow waters (<30 m) down to mesophotic depths of 30-60 m. The deeper populations of such species are less likely to be affected by certain environmental perturbations, including high temperature/high irradiance causing coral bleaching. This has led to the hypothesis that deep populations may serve as refuges and a source of recruits for shallow reef habitats. The extent of vertical connectivity of reef coral species, however, is largely unquantified. Using 10 coral host microsatellite loci and sequences of the host mtDNA putative control region, as well as ribosomal DNA (rDNA) ITS2 sequences of the coral's algal endosymbionts (Symbiodinium), we examine population structure, connectivity and symbiont specificity in the brooding coral Seriatopora hystrix across a depth profile in both northwest (Scott Reef) and northeast Australia (Yonge Reef). Strong genetic structuring over depth was observed in both regions based on the microsatellite loci; however, Yonge Reef exhibited an additional partitioning of mtDNA lineages (associated with specific symbiont ITS2 types), whereas Scott Reef was dominated by a single mtDNA lineage (with no apparent host-symbiont specificity). Evidence for recruitment of larvae of deep water origin into shallow habitats was found at Scott Reef, suggesting that recovery of shallow water habitats may be aided by migration from deep water refuges. Conversely, no migration from the genetically divergent deep slope populations into the shallow habitats was evident at Yonge Reef, making recovery of shallow habitats from deeper waters at this location highly unlikely.


Assuntos
Antozoários/genética , Recifes de Corais , Variação Genética , Genética Populacional , Animais , Austrália , Clorófitas/genética , Análise por Conglomerados , DNA Mitocondrial/genética , DNA Ribossômico/genética , Genótipo , Repetições de Microssatélites , Filogenia , Análise de Sequência de DNA , Simbiose
8.
Ecol Appl ; 19(1): 18-29, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19323171

RESUMO

Coral reefs are in decline worldwide, and marine reserve networks have been advocated as a powerful management tool for maximizing the resilience of coral communities to an increasing variety, number, and severity of disturbances. However, the effective design of reserves must account for the spatial scales of larval dispersal that affect the demography of communities over ecological time frames. Ecologically relevant distances of dispersal were inferred from DNA microsatellite data in a broadcast-spawning (Acropora tenuis) and a brooding (Seriatopora hystrix) coral at isolated reef systems off northwest Australia. Congruent with expectations based on life histories, levels of genetic subdivision among populations were markedly higher in the brooder than in the broadcast spawner. Additionally, significant subdivision for both species between systems (>100 km), and between (>10 km) or within reefs (<10 km) within systems, indicated that many reefs or reef patches are demographically independent. There was also a clear distinction in the scale of genetic structure between the different systems; at the more geographically complex of the systems, a much finer scale structure was detected in both species. This suggested that the hydrodynamics associated with these complex reefs restrict distances regularly traveled by larvae. The primary implication is that short-term recovery of these coral communities after severe disturbance requires the input of larvae from viable communities kilometers to a few tens of kilometers away. Therefore, to be self-sustaining, we suggest that coral reef protected areas need to be large enough to encompass these routine dispersal distances. Further, to facilitate recovery from severe disturbances, protected areas need to be replicated over these spatial scales. However, specific designs also need to account for size, complexity, and isolation of reefs, which will either restrict or enhance dispersal within this range.


Assuntos
Adaptação Fisiológica , Antozoários/fisiologia , Ecossistema , Animais , Antozoários/genética , Demografia , Variação Genética , Genótipo , Reprodução/fisiologia
9.
Evol Appl ; 2(2): 222-33, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-25567863

RESUMO

Understanding the evolutionary processes that have shaped existing patterns of genetic diversity of reef-building corals over broad scales is required to inform long-term conservation planning. Genetic structure and diversity of the mass-spawning hard coral, Acropora tenuis, were assessed with seven DNA microsatellite loci from a series of isolated and discontinuous coastal and offshore reef systems in northwest Australia. Significant subdivision was detected among all sites (F ST = 0.062, R ST = 0.090), with the majority of this variation due to genetic differentiation among reef systems. In addition, genetic divergence was detected between the coastal and offshore zones that cannot be adequately explained by geographic distance, indicating that transport of larvae between these zones via large-scale oceanic currents is rare even over time frames that account for connectivity over multiple generations. Significant differences in the amount of genetic diversity at each system were also detected, with higher diversity observed on the lower latitude reefs. The implications are that these reef systems of northwest Australia are not only demographically independent, but that they will also have to rely on their own genetic diversity to adapt to environmental change over the next few decades to centuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...