Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202413215, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105624

RESUMO

Gyroid, double diamond and the body-centred "Plumber's nightmare" are the three most common bicontinuous cubic phases in lyotropic liquid crystals and block copolymers. While the first two are also present in solvent-free thermotropics, the latter had never been found. Containing six-fold junctions, it was unlikely to form in the more common phases with rod-like cores normal to the network columns, where a maximum of four branches can join at a junction. The solution has therefore been sought in side-branched mesogens that lie in axial bundles joined at their ends by flexible "hinges". But for the tightly packed double framework, geometric models predicted that the side-chains should be very short. The true Plumber's nightmare reported here, using fluorescent dithienofluorenone rod-like mesogen, has been achieved with, indeed, no side chains at all, but with 6 flexible end-chains. Such molecules normally form columnar phases, but the key to converting a complex helical column-forming mesogen into a framework-forming one was the addition of just one methyl group to each pendant chain. A geometry-based explanation is given.

2.
Soft Matter ; 20(31): 6193-6203, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39045629

RESUMO

Confined in a cylindrical pore with homeotropic anchoring condition, the hexagonal columnar phase of discotic liquid crystals can form a "log-pile" configuration, in which the columns are perpendicular to the long axis of the pore. However, the {100} planes of the hexagonal lattice can orient either parallel (termed (100)‖ orientation) or perpendicular ((100)⊥) to pore axis. Here we experimentally show that the (100)‖ orientation is found in narrower cylindrical pores, and the (100)‖-(100)⊥ transition can be controlled by engineering the structure of the molecules. The (100)‖ orientation is destroyed in asymmetric discotics hepta(heptenyloxy)triphenylene (SATO7); replacing the oxygen linkage in hexa(hexyloxy)triphenylene (HATO6) by sulphur (HATS6) improves the (100)‖ orientation in small pores; adding a perfluorooctyl end to each alkyl chain of HATO6 (HATO6F8) moves the (100)‖-(100)⊥ transition to larger pores. We have provided a semi-quantitative explanation of the experimental observations, and discussed them in the context of previous findings on related materials in a wider pore size range from 60 nm to 100 µm. This allows us to produce a comprehensive picture of confined columnar liquid crystals whose applications critically depend on our ability to align them.

3.
Angew Chem Int Ed Engl ; 63(23): e202403156, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566540

RESUMO

Among the intriguing bicontinuous self-assembled structures, the gyroid cubic is the most ubiquitous. It is found in block and star polymers, surfactants with or without solvent, in thermotropic liquid crystals with end- or side-chains, and in biosystems providing structural color and modelling cell mitosis. It contains two interpenetrating networks of opposite chirality and is thus achiral if, as usual, the content of the two nets is the same. However, we now find that this is not the case for strongly chiral compounds. While achiral molecules follow the opposite twists of nets 1 and 2, molecules with a chiral center in their rod-like core fail to follow the 70° twist between junctions in net 2 and instead wind against it by -110° to still match the junction orientation. The metastable chiral gyroid is a high-entropy high-heat-capacity mesophase. The homochirality of its nets makes the CD signal of the thienofluorenone compounds close to that in the stable I23 phase with 3 isochiral nets.

4.
Macromolecules ; 57(4): 1667-1676, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38435680

RESUMO

A simple theory has been developed to explain quantitatively the multiple crystal growth rate minima observed experimentally in polyethylene brassylates (PEBs), polymers with regularly spaced "chemical defects", in this case, diester groups separated by 11 methylenes. The minima occur at the transitions where the fold length drops from 4 to 3 repeat units and from 3 to 2 units. An analytical rate-equation model was developed with elementary attachment and detachment steps of individual monomer repeat units, also including postattachment stem lengthening (stem conversion). The model produced a good fit to experimental crystallization rate curves for PEBs of three different molecular weights. The fits confirm in a quantitative way that the anomalies are caused by the self-poisoning effect, as proposed in the original experimental report on PEBs, based on the ideas developed in previous studies on long-chain n-alkanes. It is concluded that the rate minima in PEBs are the result of temporary attachment to the growth surface of stems that are too short to be stable yet long enough and close to stability to obstruct productive growth by stems of sufficient length. The results confirm the ubiquitous presence of self-poisoning at the growth front of polymer crystals in general and will help to achieve a better understanding of the complex process of crystallization of polymers. It will also allow the determination of more realistic parameters controlling their lamellar growth kinetics.

5.
Macromolecules ; 56(21): 8754-8766, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024153

RESUMO

The enantiomeric ratio is a key factor affecting the crystallization behavior and morphology of poly-l-lactide/poly-d-lactide (PLLA/PDLA) blends. Despite a number of studies on crystallization of nonequimolar PLLA/PDLA blends, a full picture of the effect of the L/D ratio is still lacking. Here, we put the two enantiomers in contact and allow interdiffusion above the melting point of the stereocomplex crystal (SC) to prepare samples with a continuously changing L/D ratio from enantiopure PLLA (ratio 0/100) to enantiopure PDLA (100/0). Using polarized optical microscopy, atomic force microscopy, and microbeam X-ray diffraction, the continuous spectrum of morphologies and phase behaviors across the contact zone is investigated. The blend morphology shows clear evidence of "poisoning by purity" of SC crystallization at all blend compositions. The low birefringence of the 50/50 SC is found to be due to the meandering of broken edge-on lamellae. Its further decrease to near zero as L/D deviates further away from 50/50 is explained by transition from radial edge-on lamellae to fully random meandering lamellae, then to mixed flat-on lamellae, and finally to submicron-sized axialites. In comparison with the smooth and straight homocrystal (HC) lamellae of pure enantiomers, the lamellae in the blends often have serrated edges caused by pinning by rejected excess enantiomer acting as an impurity during lamellar growth. A feature of the binary phase diagram is pure enantiomers acting as an impurity to the SC and counter-enantiomer acting as an impurity to homocrystallization of the enantiomers. Crystallization was found to be most suppressed at 99% enantiomeric purity, where the amount of the counter-enantiomer is insufficient for creation of SC nuclei and HC growth is inhibited by the small amount of the enantio-impurity. These and other intriguing results are less likely to be noticed without the continuous composition gradient of the contact sample.

6.
J Am Chem Soc ; 145(31): 17443-17460, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523689

RESUMO

The recently discovered orthorhombic liquid crystal (LC) phase of symmetry Fddd is proving to be widespread. In this work, a chiral hydroxybutyrate linkage is inserted into the molecular core of hexacatenar rodlike compounds, containing a thienylfluorenone fluorophore. In addition to more usual tools, the methods used include grazing-incidence X-ray scattering, modulated differential scanning calorimetry (DSC), flash DSC with rates up to 6000 K/s, and chiro-optical spectroscopies using Mueller matrix method, plus conformational mapping. Although pure R and S enantiomers form only a strongly chiral hexagonal columnar LC phase (Colh*), the racemic mixture forms a highly ordered Fddd phase with 4 right- and 4 left-handed twisted ribbon-like columns traversing its large unit cell. In that structure, the two enantiomers locally deracemize and self-sort into the columns of their preferred chirality. The twisted ribbons in Fddd, with a 7.54 nm pitch, consist of stacked rafts, each containing ∼2 side-by-side molecules, the successive rafts rotated by 17°. In contrast, an analogous achiral compound forms only the columnar phase. The multiple methods used gave a comprehensive picture and helped in-depth understanding not only of the Fddd phase but also of the "parachiral" Colh* in pure enantiomers with irregular helicity, whose chirality is compared to the magnetization of a paramagnet in a field. Unusual short-range ordering effects are also described. An explanation of these phenomena is proposed based on conformational analysis. Surprisingly, the isotropic-columnar transition is extremely fast, completing within ∼20 ms. A clear effect of phase on UV-vis absorption and emission is observed.

7.
Macromolecules ; 56(14): 5502-5511, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521250

RESUMO

Polymorphism of semicrystalline polymers has significant influence on their physical properties, with each form having its advantages and disadvantages. However, real-life polymer processing often results in different coexisting crystal polymorphs, and it remains a challenge to determine their shape, spatial distribution, and volume fraction. Here, i-polypropylene (i-PP) sheets containing both α- and ß-forms were prepared either by adding ß-nucleating agent or by fiber pulling-induced crystallization. By adding a compatible dye that is partially rejected from the growing crystalline aggregates (spherulites and cylindrites), we visualize the shape of these objects in 3D using two-photon fluorescence confocal microscopy. To distinguish between crystal forms, we take advantage of the difference in dye-retaining ability of the α- and ß-aggregates. Even in 2D, fluorescence microscopy (FM) distinguishes the two crystal forms better than polarized microscopy. In 3D imaging, the volume fraction and spatial distribution of α- and ß-forms in different morphological types could be determined quantitatively. Morphologies described as α-teeth, ß-fans, and α-teardrops were visualized for the first time in 3D. Furthermore, internal and surface microcracks were seen to be associated predominantly with the ß-form and around the fiber. Spatial distribution of α- and ß-forms was also determined by scanning with a synchrotron X-ray beam. Good agreement was obtained with 3D microscopy, but XRD could not match the detail obtainable by the tomography. The work demonstrates the ability of the 3D imaging method to distinguish different crystal forms and their specific morphologies.

8.
Chemphyschem ; 24(8): e202300192, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37066767

RESUMO

The front cover artwork is provided by Takashi Kato at the University of Tokyo. The image shows three assembled structures of smectic liquid crystals that show reentrant behavior. Read the full text of the Research Article at 10.1002/cphc.202200927.

9.
Nat Chem ; 15(5): 625-632, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36959511

RESUMO

Quasicrystals are intriguing structures that have long-range positional correlations but no periodicity in real space, and typically with rotational symmetries that are 'forbidden' in conventional periodic crystals. Here, we present a two-dimensional columnar liquid quasicrystal with dodecagonal symmetry. Unlike previous dodecagonal quasicrystals based on random tiling, a honeycomb structure based on a strictly quasiperiodic tessellation of tiles is observed. The structure consists of dodecagonal clusters made up of triangular, square and trapezoidal cells that are optimal for local packing. To maximize the presence of such dodecagonal clusters, the system abandons periodicity but adopts a quasiperiodic structure that follows strict packing rules. The stability of random-tiling dodecagonal quasicrystals is often attributed to the entropy of disordering when strict tiling rules are broken, at the sacrifice of the long-range positional order. However, our results demonstrate that quasicrystal stability may rest on energy minimization alone, or with only minimal entropic intervention.

10.
Chemistry ; 29(33): e202204003, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36853148

RESUMO

3D crystalline order with 1 nm resolution is observed in aqueous solutions of supramolecular nanotubes containing 94 % water, at concentrations as low as 6 wt%. 50 of star-like organic ions arrange into supramolecular rings which, in turn, stack on top of each other to form long hollow tubes with 15 nm outer diameter. Cryo-TEM and X-ray diffraction show that the parallel nanotubes arrange on a perfect hexagonal lattice. Unexpectedly, fiber diffraction on sheared solutions revealed numerous hkl Bragg reflections on several layer lines indicating longitudinal interlock between the tubes and 3D crystalline order with molecular-scale details transferred across 10 nm thick layers of water. The observed high 3D order is attributed to long-range attraction between like-charged tubes and amplified charge modulation by the extremely high intra-tube correlation length.


Assuntos
Nanotubos , Água , Água/química , Difração de Raios X , Nanotubos/química
11.
Macromolecules ; 56(3): 989-998, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36818575

RESUMO

Formation of stereocomplex crystals (SC) is an effective way to improve the heat resistance and mechanical performance of poly(lactic acid) products. However, at all but the slowest cooling rates, SC crystallization of a high-molecular-weight poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemate stops at a high temperature or does not even start, leaving the remaining melt to crystallize into homochiral crystals (HC) or an SC-HC mixture on continuous cooling. To understand this intriguing phenomenon, we revisit the SC crystallization of both high- and low-molecular-weight PLLA/PDLA racemates. Based on differential scanning calorimetry (DSC), supplemented by optical microscopy and X-ray scattering, we concluded that what stops the growth of SC is the accumulation of the nearly pure enantiomer, either PDLA or PLLA, that is rejected from the SC ahead of its growth front. The excess enantiomer is a result of random compositional fluctuation present in the melt even if the average composition is 1:1. The situation is more favorable if the initial polymer is not fully molten or is brought up to just above the melting point where SC seeds remain, as proven by DSC and X-ray scattering. Moreover, we find that not only is SC growth poisoned by the locally pure enantiomer but also that at lower temperatures, the HC growth can be poisoned by the blend. This explains why SC growth, arrested at high temperatures, can resume at lower temperatures, along with the growth of HC. Furthermore, while some previous works attributed the incomplete SC crystallization to a problem of primary nucleation, we find that adding a specific SC-promoting nucleating agent does not help alleviate the problem of cessation of SC crystallization. This reinforces the conclusion that the main problem is in growth rather than in nucleation.

12.
Chemphyschem ; 24(8): e202200927, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36594677

RESUMO

Reentrant phenomena in soft matter and biosystems have attracted considerable attention because their properties are closely related to high functionality. Here, we report a combined experimental and computational study on the self-assembly and reentrant behavior of a single-component thermotropic smectic liquid crystal toward the realization of dynamically functional materials. We have designed and synthesized a mesogenic molecule consisting of an alicyclic trans,trans-bicyclohexyl mesogen and a polar cyclic carbonate group connected by a flexible tetra(oxyethylene) spacer. The molecule exhibits an unprecedented sequence of layered smectic phases, in the order: smectic A-smectic B-reentrant smectic A. Electron density profiles and large-scale molecular dynamics simulations indicate that competition between the stacking of bicyclohexyl mesogens and the conformational flexibility of tetra(oxyethylene) chains induces this unusual reentrant behavior. Ion-conductive reentrant liquid-crystalline materials have been developed, which undergo the multistep conductivity changes in response to temperature. The reentrant liquid crystals have potential as new mesogenic materials exhibiting switching functions.

13.
Macromolecules ; 56(1): 198-206, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36644554

RESUMO

Two-photon confocal laser microscopy was used to obtain three-dimensional (3D) images of the morphology of poly(lactic acid) after shear-induced crystallization. The necessary fluorescence contrast was achieved by doping the polymer with Nile Red. The dye gets partially rejected from the growing crystalline aggregates during their formation, thus creating a renderable high-low fluorescence boundary outlining the shape of the aggregates. Parallel-plate melt-shearing and pulling a glass fiber through the melt were used as the two methods to achieve shear-induced crystallization. This study focuses on the shape of the resulting cylindrites, i.e., large-diameter shish-kebabs. The first 3D images of polymer cylindrites show that, if far from boundaries, they are circular cylinders, highly regular after fiber pull, but less so after parallel-plate shear. In the latter case, the cylindrite reveals the trajectory of the foreign particle that had nucleated its growth. Interestingly, lateral growth of the cylindrites was found to accelerate toward the sample surface when approaching it, giving the cylindrite an elliptical cross section. Furthermore and surprisingly, in the case of fiber pull, a row of spherulites is nucleated at the polymer-substrate interface nearest to the fiber, aligned along the fiber axis and appearing ahead of the rest of the space-filling spherulites. Both the phenomena, elliptical cylindrites and row of spherulites, are attributed to negative pressure buildup peaking at the cylindrite growth front and at the nearby film surface caused by crystallization-induced volume contraction. The pressure and flow distribution in the system is confirmed by numerical simulation. The results illustrate the value of 3D imaging of crystalline morphology in polymer science and polymer processing industry.

14.
Macromol Rapid Commun ; 44(4): e2200706, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36353903

RESUMO

Herein novel multicompartment nanoparticles (MCNs) that combine high stability and cargo loading capacity are developed. The MCNs are fabricated by crystallization-driven self-assembly (CDSA) of a tailor-made 21 arm star polymer, poly(L-lactide)[poly(tert-butyl acrylate)-block-poly(ethylene glycol)]20 [PLLA(PtBA-b-PEG)20 ]. Platelet-like or spherical MCNs containing a crystalline PLLA core and hydrophobic PtBA subdomains are formed and stabilized by PEG. Hydrophobic cargos, such as Nile Red and chemotherapeutic drug doxorubicin, can be successfully encapsulated into the collapsed PtBA subdomains with loading capacity two orders of magnitude higher than traditional CDSA nanoparticles. Depolarized fluorescence measurements of the Nile Red loaded MCNs suggest that the free volume of the hydrophobic chains in the nanoparticles may be the key for regulating their drug loading capacity. In vitro study of the MCNs suggests excellent cytocompatibility of the blank nanoparticles as well as a dose-dependent cellular uptake and cytotoxicity of the drug-loaded MCNs.


Assuntos
Nanopartículas , Polímeros , Polímeros/química , Portadores de Fármacos/química , Cristalização , Polietilenoglicóis/química , Nanopartículas/química , Micelas
15.
Chemistry ; 29(11): e202203673, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36573704

RESUMO

The correlation between the size of nanoparticles, the structure and shape of mesogenic ligands and the ensuing assembly behaviour is not really understood. Closer inspection shows very surprising features. Here, 2- and 4-nm gold nanoparticles (NPs) were synthesized, and grafted with a forked ligand containing two rod-like mesogens in its branches: one cholesterol, the other with azobenzene. The 4-nm NPs also contained n-hexylthiol as co-ligand. They were found to form a FCC cubic superlattice, whereas the 2-nm NPs form hexagonal HCP with weak birefringence, hence with partially oriented ligands. The structures were compared with those of related systems containing a range of different azobenzene-to-cholesterol ratios, all giving body-centred tetragonal superlattices with various degrees of anisotropy. Geometric analysis is presented in terms of the asphericity of the NPs' surroundings, requirement for space-filling and structural anisotropy. Some general rules are derived to help design the soft corona around the NPs in order to obtain superlattices with the desired structure and anisotropy.

16.
Nano Lett ; 22(11): 4569-4575, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584547

RESUMO

Here, we report the relationship between helical pitch of the helical nanofilament (HNF) phase formed by bent-core molecule NOBOW and the concentration of achiral dopants 5CB and octane, using linearly polarized resonant soft X-ray scattering (RSoXS). Utilizing theory-based simulation, which fits well with the experiments, the molecular helices in the filament were probed and the superstructure of helical 5CB directed by groove of HNFs was observed. Quantitative pitch determination with RSoXS reveals that helical pitch variation is related to 5CB concentration with no temperature dependence. Doping rodlike immiscible 5CB led to a pitch shortening of up to 30%, which was attributed to a change in interfacial tension. By shedding light not only on phase behavior of binary systems but also enabling control over pitch length, our work may benefit various applications of HNF-containing binary systems, including optical rotation devices, circularly polarized light emitters, and chirality transfer agents.


Assuntos
Cristais Líquidos , Simulação por Computador , Cristais Líquidos/química , Temperatura
17.
Chem Asian J ; 17(8): e202200057, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35192226

RESUMO

We report the formation of a 3D body-centred self-assembled superlattice of gold nanoparticles whose interparticle gap, and hence its plasmonic properties, are adjustable exclusively in the xy-plane. Thus, even though the particles are spherical, their anisotropic packing generates tailorable plasmonic dichroism. The gold nanoparticles are coated with forked ligands containing two mesogens: either two cholesterols ("twin"), one cholesterol and one azobenzene ("Janus"), or a mixture of the two. Beside the body-centered arrangement of gold nanoparticles, the structure also contains unusual two-dimensionally x-y dual undulated (eggbox-like) smectic-like layers of mesogens. Moreover, the presence of azobenzene mesogens allows the superlattice to be melted through UV-induced photo-isomerization; the process is reversible displaying low fatigue on repeated cycling.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Ligantes , Nanopartículas Metálicas/química
18.
Nat Commun ; 13(1): 384, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046396

RESUMO

Helical structures continue to inspire, prompted by examples such as DNA double-helix and alpha-helix in proteins. Most synthetic polymers also crystallize as helices, which relieves steric clashes by twisting, while keeping the molecules straight for their ordered packing. In columnar liquid crystals, which often display useful optoelectronic properties, overall helical chirality can be induced by inclusion of chiral chemical groups or dopants; these bias molecular twist to either left or right, analogous to a magnetic field aligning the spins in a paramagnet. In this work, however, we show that liquid-crystalline columns with long-range helical order can form by spontaneous self-assembly of straight- or bent-rod molecules without inclusion of any chiral moiety. A complex lattice with Fddd symmetry and 8 columns per unit cell (4 right-, 4 left-handed) characterizes this "antiferrochiral" structure. In selected compounds it allows close packing of their fluorescent groups reducing their bandgap and giving them promising light-emitting properties.

19.
Adv Mater ; 33(52): e2104416, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609762

RESUMO

Alleviating large stress is critical for high-energy batteries with large volume change upon cycling, yet this still presents a challenge. Here, a gradient hydrogen-bonding binder is reported for high-capacity silicon-based anodes that are highly desirable for the next-generation lithium-ion batteries. The well-defined gradient hydrogen bonds, with a successive bond energy of -2.88- -10.04 kcal mol-1 , can effectively release the large stress of silicon via the sequential bonding cleavage. This can avoid recurrently abrupt structure fracture of traditional binder due to lack of gradient energy dissipation. Certainly, this regulated binder endows stable high-areal-capacity silicon-based electrodes >4 mAh cm-2 . Beyond proof of concept, this work demonstrates a 2 Ah silicon-based pouch cell with an impressive capacity retention of 80.2% after 700 cycles (0.028% decay/cycle) based on this gradient hydrogen-bonding binder, making it more promising for practical application.

20.
Macromol Rapid Commun ; 42(20): e2100354, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34431582

RESUMO

A general approach to asymmetrically localize nanoparticles (NPs) in larger polymeric nanostructures is demonstrated by coassembly of tadpole-like silver NPs (AgNPs) and amphiphilic block copolymers (BCPs). The tadpole-like AgNPs are prepared by template synthesis using a tailor-made A(BC)20 star polymer, namely poly(ethylene glycol)[poly(acrylic acid)-block-polystyrene]20 [PEG(PAA-b-PS)20 ], as template resulting in AgNPs decorated with twenty short PS chains and one long PEG chain, named Ag@PEG(PS)20 . The asymmetric distribution of these AgNPs in various polymeric nanostructures, e.g., spherical micelles, cylindrical micelles, vesicles, and sponge phase, is achieved via coassembly of the as-prepared Ag@PEG(PS)20 and PEG-b-PS in solution driven by the anisotropic nature of the Ag@PEG(PS)20 . This report not only provides a new strategy for the fabrication of tadpole-like NPs but also offers opportunity for off-center distributing NPs in hybrid assemblies, which may find applications in, e.g., sensing, catalysis, and diagnostics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Larva , Micelas , Polímeros , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA