Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38400413

RESUMO

Chemosensor technology for trace gases in the air always aims to identify these compounds and then measure their concentrations. For identification, traceable methods are sparse and relate to large appliances such as mass spectrometers. We present a new method that uses the alternative traceable measurement of the ionization energies of trace gases in a way that can be miniaturized and energetically tuned. We investigate the achievable performance. Since tunable UV sources are not available for photoionization, we take a detour via impact ionization with electrons, which we generate using the photoelectric effect and bring to sharp, defined energies on a nanoscale in the air. Electron impact ionization is thus possible at air pressures of up to 900 hPa. The sensitivity of the process reaches 1 ppm and is equivalent to that of classic PID. With sharpened energy settings, substance identification is currently possible with an accuracy of 30 meV. We can largely explain the experimental observations with the known quantum mechanical models.

2.
J Am Soc Mass Spectrom ; 34(8): 1768-1777, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37452772

RESUMO

A model to quantitatively predict ion abundances from atmospheric pressure chemical ionization (APCI) between hydrated protons and a volatile organic compound (VOC) was extended to binary mixtures of VOCs. The model includes differences in vapor concentrations, rate coefficients, and reaction times and is enhanced with cross reactions between neutral vapors and protonated monomers. In this model, two specific VOCs were considered, a ketone, 6-methyl-5-hepten-2-one (M, and an amine, 2,6-di-tert-butyl-pyridine (N), with measured "conditional rate coefficients" (in cm3·s-1) of kM = 1.11 × 10-9 and kN = 9.17 × 10-10, respectively. The cross reaction of MH+(H2O)x to NH+(H2O)y was measured as kcr = 1.31 × 10-12 at 60 °C. Cross reactions showed an impact on ion abundances at t > 30 ms for equal vapor concentrations of 100 ppb for M and N. In contrast, this impact was negligible for vapor concentrations of 1 ppb and did not exceed 5% change in product ion abundance up to 1000 ms reaction times. The model was validated with laboratory measurements to within ∼10% using an ion mobility spectrometer and effective reaction time obtained from computational fitting of experimental findings. This was necessitated by complex flow patterns in the ion source volume and was determined as ∼10.5 ms. The model has interpretative and predictive value for quantitative analysis of responses with ambient pressure ion sources for mass spectrometry and ion mobility spectrometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...