Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Geroscience ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727872

RESUMO

Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.

2.
Front Endocrinol (Lausanne) ; 15: 1299148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752177

RESUMO

Introduction: Low socioeconomic status affects not only diagnosis rates and therapy of patients with diabetes mellitus but also their health behavior. Our primary goal was to examine diagnosis rates and therapy of individuals with diabetes living in Ormánság, one of the most deprived areas in Hungary and Europe. Our secondary goal was to examine the differences in lifestyle factors and cancer screening participation of patients with diagnosed and undiagnosed diabetes compared to healthy participants. Methods: Our study is a cross-sectional analysis using data from the "Ormánság Health Program". The "Ormánság Health Program" was launched to improve the health of individuals in a deprived region of Hungary. Participants in the program were coded as diagnosed diabetes based on diagnosis by a physician as a part of the program, self-reported diabetes status, and self-reported prescription of antidiabetic medication. Undiagnosed diabetes was defined as elevated blood glucose levels without self-reported diabetes and antidiabetic prescription. Diagnosis and therapeutic characteristics were presented descriptively. To examine lifestyle factors and screening participation, patients with diagnosed and undiagnosed diabetes were compared to healthy participants using linear regression or multinomial logistic regression models adjusted for sex and age. Results: Our study population consisted of 246 individuals, and 17.9% had either diagnosed (n=33) or undiagnosed (n=11) diabetes. Metformin was prescribed in 75.8% (n=25) of diagnosed cases and sodium-glucose cotransporter-2 inhibitors (SGLT-2) in 12.1% (n=4) of diagnosed patients. After adjustment, participants with diagnosed diabetes had more comorbidities (adjusted [aOR]: 3.50, 95% confidence interval [95% CI]: 1.34-9.18, p<0.05), consumed vegetables more often (aOR: 2.49, 95% CI: 1.07-5.78, p<0.05), but desserts less often (aOR: 0.33, 95% CI: 0.15-0.75, p<0.01) than healthy individuals. Patients with undiagnosed diabetes were not different in this regard from healthy participants. No significant differences were observed for cancer screening participation between groups. Conclusions: To increase recognition of diabetes, targeted screening tests should be implemented in deprived regions, even among individuals without any comorbidities. Our study also indicates that diagnosis of diabetes is not only important for the timely initiation of therapy, but it can also motivate individuals in deprived areas to lead a healthier lifestyle.


Assuntos
Detecção Precoce de Câncer , Estilo de Vida , Humanos , Estudos Transversais , Hungria/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Detecção Precoce de Câncer/estatística & dados numéricos , Detecção Precoce de Câncer/métodos , Adulto , Idoso , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/diagnóstico , Neoplasias/epidemiologia , Neoplasias/diagnóstico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico
3.
Geroscience ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714609

RESUMO

Mental disorders are among the leading causes of disability worldwide, disproportionately affecting older people. This study aims to assess the mental health of elderly individuals living in a deprived region of Hungary, and to identify and estimate the weight of different determinants of mental health across different age groups. A cross-sectional study was conducted with randomly selected samples of individuals (n = 860) aged 18 years and older in Northeast Hungary. The World Health Organization Well-Being Index (WHO-5), the single-item Life Satisfaction Scale, and the 12-item General Health Questionnaire (GHQ-12) were used to measure mental health of the participants. Multiple linear regression analysis was performed to measure the association between sociodemographic and health-related variables and mental health. Overall, the mean WHO-5 score was 69.2 ± 18.1 and it showed a significant decrease by age (p < 0.001), with the lowest score observed in aged 75 years and above (p < 0.001). The mean life satisfaction score was 7.5 ± 1.9 and it showed a significant decreasing trend over the life course (p < 0.001). The highest level of psychological distress as assessed by GHQ-12 was observed in the group aged 75 years or older (11.5 ± 6.0, p < 0.001). Multiple linear regression indicated that self-reported financial status, social support, sense of control over their health, activity limitation and pain intensity were the most important determinants of mental health among older adults. Interventions to improve the mental health of older adults should focus on the positive impact of social support, the reduction of financial insecurity and the use of effective pain relief medications.

4.
Geroscience ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771423

RESUMO

The presence of prolonged symptoms after COVID infection worsens the workability and quality of life. 200 adults with long COVID syndrome were enrolled after medical, physical, and mental screening, and were divided into two groups based on their performance. The intervention group (n = 100) received supervised rehabilitation at Department of Pulmonology, Semmelweis University with the registration number 160/2021 between 01/APR/2021-31/DEC/2022, while an age-matched control group (n = 100) received a single check-up. To evaluate the long-term effects of the rehabilitation, the intervention group was involved in a 2- and 3-month follow-up, carrying out cardiopulmonary exercise test. Our study contributes understanding long COVID rehabilitation, emphasizing the potential benefits of structured cardiopulmonary rehabilitation in enhancing patient outcomes and well-being. Significant difference was found between intervention group and control group at baseline visit in pulmonary parameters, as forced vital capacity, forced expiratory volume, forced expiratory volume, transfer factor for carbon monoxide, transfer coefficient for carbon monoxide, and oxygen saturation (all p < 0.05). Our follow-up study proved that a 2-week long, patient-centered pulmonary rehabilitation program has a positive long-term effect on people with symptomatic long COVID syndrome. Our data showed significant improvement between two and three months in maximal oxygen consumption (p < 0.05). Multidisciplinary, individualized approach may be a key element of a successful cardiopulmonary rehabilitation in long COVID conditions, which improves workload, quality of life, respiratory function, and status of patients with long COVID syndrome.

5.
Brain Spine ; 4: 102830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764890

RESUMO

Introduction: Post-traumatic hypopituitarism (PTHP) is a significant, but often neglected consequence of traumatic brain injury (TBI). Research question: We aimed to provide a comprehensive overview of epidemiology, pathophysiology, clinical features and diagnostic approaches of PTHP. Materials and methods: MEDLINE, EMBASE, Cochrane Library and Web of Science were searched. 45 articles of human studies evaluating acute endocrine changes following mild, moderate and severe TBI were selected. Results: Severity of TBI seems to be the most important risk factor of PTHP. Adrenal insufficiency (AI) was present in 10% of TBI patients (prevalence can be as high as 50% after severe TBI), and hypocortisolemia is a predictor of mortality and long-term hypopituitarism. Suppression of the thyroid axis in 2-33% of TBI patients may be an independent predictor of adverse neurological outcome, as well. 9-36% of patients with severe TBI exhibit decreased function of the somatotrophic axis with a divergent effect on the central nervous system. Arginine-Vasopressin (AVP) deficiency is present in 15-51% of patients, associated with increased mortality and unfavorable outcome. Due to shear and injury of the stalk hyperprolactinemia is relatively common (2-50%), but it bears little clinical significance. Sex hormone levels remain within normal values. Discussion and conclusion: PTHP occurs frequently after TBI, affecting various axis and determining patients' outcome. However, evidence is scarce regarding exact epidemiology, diagnosis, and effective clinical application of hormone substitution. Future studies are needed to identify patients at-risk, determine the optimal timing for endocrine testing, and refine diagnostic and treatment approaches to improve outcome.

6.
Geroscience ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639833

RESUMO

Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.

7.
Nutrients ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612986

RESUMO

High-fat diets (HFDs) have pervaded modern dietary habits, characterized by their excessive saturated fat content and low nutritional value. Epidemiological studies have compellingly linked HFD consumption to obesity and the development of type 2 diabetes mellitus. Moreover, the synergistic interplay of HFD, obesity, and diabetes expedites the aging process and prematurely fosters age-related diseases. However, the underlying mechanisms driving these associations remain enigmatic. One of the most conspicuous hallmarks of aging is the accumulation of highly inflammatory senescent cells, with mounting evidence implicating increased cellular senescence in the pathogenesis of age-related diseases. Our hypothesis posits that HFD consumption amplifies senescence burden across multiple organs. To scrutinize this hypothesis, we subjected mice to a 6-month HFD regimen, assessing senescence biomarker expression in the liver, white adipose tissue, and the brain. Aging is intrinsically linked to impaired cellular stress resilience, driven by dysfunction in Nrf2-mediated cytoprotective pathways that safeguard cells against oxidative stress-induced senescence. To ascertain whether Nrf2-mediated pathways shield against senescence induction in response to HFD consumption, we explored senescence burden in a novel model of aging: Nrf2-deficient (Nrf2+/-) mice, emulating the aging phenotype. Our initial findings unveiled significant Nrf2 dysfunction in Nrf2+/- mice, mirroring aging-related alterations. HFD led to substantial obesity, hyperglycemia, and impaired insulin sensitivity in both Nrf2+/- and Nrf2+/+ mice. In control mice, HFD primarily heightened senescence burden in white adipose tissue, evidenced by increased Cdkn2a senescence biomarker expression. In Nrf2+/- mice, HFD elicited a significant surge in senescence burden across the liver, white adipose tissue, and the brain. We postulate that HFD-induced augmentation of senescence burden may be a pivotal contributor to accelerated organismal aging and the premature onset of age-related diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Resiliência Psicológica , Animais , Camundongos , Fator 2 Relacionado a NF-E2/genética , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/etiologia , Senescência Celular , Envelhecimento , Obesidade/etiologia , Biomarcadores
8.
Heliyon ; 10(8): e29348, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628765

RESUMO

Introduction: Patients with advanced cancer tend to utilize the services of the health care system, particularly emergency departments (EDs), more often, however EDs aren't necessarily the most ideal environments for providing care to these patients. The objective of our study was to analyze the clinical and demographic characteristics of advanced patients with cancer receiving basic palliative care (BPC) or hospice care (HC), and to identify predictive factors of BPC and HC prior to their visit to the ED, in a large tertiary care center in Hungary. Methods: A retrospective, detailed analysis of patients receiving only BPC or HC, out of 1512 patients with cancer visiting the ED in 2018, was carried out. Sociodemographic and clinical data were collected via automated and manual chart review. Patients were followed up to determine length of survival. Descriptive and exploratory statistical analyses were performed. Results: Hospital admission, multiple (≥4x) ED visits, and respiratory cancer were independent risk factors for receiving only BPC (OR: 3.10, CI: 1.90-5.04; OR: 2.97, CI: 1.50-5.84; OR: 1.82, CI: 1.03-3.22, respectively), or HC (OR: 2.15, CI: 1.26-3.67; OR: 4.94, CI: 2.51-9.71; OR: 2.07, CI: 1.10-3.91). Visiting the ED only once was found to be a negative predictive factor for BPC (OR: 0.28, CI: 0.18-0.45) and HC (OR: 0.18, 0.10-0.31) among patients with cancer visiting the ED. Conclusions: Our study is the first from this European region to provide information regarding the characteristics of patients with cancer receiving BPC and HC who visited the ED, as well as to identify possible predictive factors of receiving BPC and HC. Our study may have relevant implications for health care planning strategies in practice.

9.
Geroscience ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658505

RESUMO

Colorectal cancer, recognized as a quintessential age-related disease, underscores the intricate interplay between aging mechanisms and disease pathogenesis. Cellular senescence, a DNA damage-induced cellular stress response, is characterized by cell cycle arrest, the expression of an inflammatory senescence-associated secretory phenotype, and alterations in extracellular matrix metabolism. It is widely recognized as a fundamental and evolutionarily conserved mechanism of aging. Guided by geroscience principles, which assert that the pathogenesis of age-related diseases involves cellular mechanisms of aging, this study delves into the role of senescence-related genes in colon cancer progression. Leveraging a gene set reflective of senescence-associated pathways, we employed uni- and multivariate Cox proportional hazards survival analysis combined with the determination of the false discovery rate to analyze correlations between gene expression and survival. The integrated database of 1130 colon cancer specimens with available relapse-free survival time and relapse event data from ten independent cohorts provided a robust platform for survival analyses. We identified senescence-related genes associated with differential expression levels linked to shorter survival. Our findings unveil a prognostic signature utilizing cellular senescence-related genes (hazard ratio: 2.73, 95% CI 2.12-3.52, p = 6.4E - 16), offering valuable insights into survival prediction in colon cancer. Multivariate analysis underscored the independence of the senescence-related signature from available epidemiological and pathological variables. This study highlights the potential of senescence-related genes as prognostic biomarkers. Overall, our results underscore the pivotal role of cellular senescence, a fundamental mechanism of aging, in colon cancer progression.

10.
Brain Commun ; 6(2): fcae080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495306

RESUMO

Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.

12.
Geroscience ; 46(3): 3481-3501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38388918

RESUMO

Cerebrovascular fragility and cerebral microhemorrhages (CMH) contribute to age-related cognitive impairment, mobility defects, and vascular cognitive impairment and dementia, impairing healthspan and reducing quality of life in the elderly. Insulin-like growth factor 1 (IGF-1) is a key vasoprotective growth factor that is reduced during aging. Circulating IGF-1 deficiency leads to the development of CMH and other signs of cerebrovascular dysfunction. Here our goal was to understand the contribution of IGF-1 signaling on vascular smooth muscle cells (VSMCs) to the development of CMH and associated gait defects. We used an inducible VSMC-specific promoter and an IGF-1 receptor (Igf1r) floxed mouse line (Myh11-CreERT2 Igf1rf/f) to knockdown Igf1r. Angiotensin II in combination with L-NAME-induced hypertension was used to elicit CMH. We observed that VSMC-specific Igf1r knockdown mice had accelerated development of CMH, and subsequent associated gait irregularities. These phenotypes were accompanied by upregulation of a cluster of pro-inflammatory genes associated with VSMC maladaptation. Collectively our findings support an essential role for VSMCs as a target for the vasoprotective effects of IGF-1, and suggest that VSMC dysfunction in aging may contribute to the development of CMH.


Assuntos
Hipertensão , Músculo Liso Vascular , Receptor IGF Tipo 1 , Idoso , Animais , Humanos , Camundongos , Marcha , Hipertensão/genética , Hipertensão/complicações , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Receptor IGF Tipo 1/genética , Transtornos Neurológicos da Marcha/genética
13.
Geroscience ; 46(3): 3105-3122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38182857

RESUMO

Hair graying, also known as canities or achromotrichia, is a natural phenomenon associated with aging and is influenced by external factors such as stress, environmental toxicants, and radiation exposure. Understanding the mechanisms underlying hair graying is an ideal approach for developing interventions to prevent or reverse age-related changes in regenerative tissues. Hair graying induced by ionizing radiation (γ-rays or X-rays) has emerged as a valuable experimental model to investigate the molecular pathways involved in this process. In this review, we examine the existing evidence on radiation-induced hair graying, with a particular focus on the potential role of radiation-induced cellular senescence. We explore the current understanding of hair graying in aging, delve into the underlying mechanisms, and highlight the unique advantages of using ionizing-irradiation-induced hair graying as a research model. By elucidating the molecular pathways involved, we aim to deepen our understanding of hair graying and potentially identify novel therapeutic targets to address this age-related phenotypic change.


Assuntos
Senescência Celular , Cor de Cabelo , Camundongos , Animais , Estresse Oxidativo , Cabelo , Modelos Teóricos , Dano ao DNA
14.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255769

RESUMO

Carotid artery stenosis (CAS) affects approximately 5-7.5% of older adults and is recognized as a significant risk factor for vascular cognitive impairment (VCI). The impact of CAS on cerebral blood flow (CBF) within the ipsilateral hemisphere relies on the adaptive capabilities of the cerebral microcirculation. In this study, we aimed to test the hypothesis that the impaired availability of nitric oxide (NO) compromises CBF homeostasis after unilateral carotid artery occlusion (CAO). To investigate this, three mouse models exhibiting compromised production of NO were tested: NOS1 knockout, NOS1/3 double knockout, and mice treated with the NO synthesis inhibitor L-NAME. Regional CBF changes following CAO were evaluated using laser-speckle contrast imaging (LSCI). Our findings demonstrated that NOS1 knockout, NOS1/3 double knockout, and L-NAME-treated mice exhibited impaired CBF adaptation to CAO. Furthermore, genetic deficiency of one or two NO synthase isoforms increased the tortuosity of pial collaterals connecting the frontoparietal and temporal regions. In conclusion, our study highlights the significant contribution of NO production to the functional adaptation of cerebrocortical microcirculation to unilateral CAO. We propose that impaired bioavailability of NO contributes to the impaired CBF homeostasis by altering inter- and intrahemispheric blood flow redistribution after unilateral disruption of carotid artery flow.


Assuntos
Doenças das Artérias Carótidas , Estenose das Carótidas , Animais , Camundongos , Óxido Nítrico , NG-Nitroarginina Metil Éster/farmacologia , Circulação Cerebrovascular , Artéria Carótida Primitiva
15.
Geroscience ; 46(1): 191-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38060158

RESUMO

The Semmelweis Study is a prospective occupational cohort study that seeks to enroll all employees of Semmelweis University (Budapest, Hungary) aged 25 years and older, with a population of 8866 people, 70.5% of whom are women. The study builds on the successful experiences of the Whitehall II study and aims to investigate the complex relationships between lifestyle, environmental, and occupational risk factors, and the development and progression of chronic age-associated diseases. An important goal of the Semmelweis Study is to identify groups of people who are aging unsuccessfully and therefore have an increased risk of developing age-associated diseases. To achieve this, the study takes a multidisciplinary approach, collecting economic, social, psychological, cognitive, health, and biological data. The Semmelweis Study comprises a baseline data collection with open healthcare data linkage, followed by repeated data collection waves every 5 years. Data are collected through computer-assisted self-completed questionnaires, followed by a physical health examination, physiological measurements, and the assessment of biomarkers. This article provides a comprehensive overview of the Semmelweis Study, including its origin, context, objectives, design, relevance, and expected contributions.


Assuntos
Envelhecimento Saudável , Humanos , Feminino , Masculino , Universidades , Estudos de Coortes , Estudos Prospectivos , Hungria
16.
Microcirculation ; 31(2): e12840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38082450

RESUMO

INTRODUCTION: Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS: Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS: In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS: These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.


Assuntos
Barreira Hematoencefálica , Fator de Crescimento Insulin-Like I , Animais , Camundongos , Barreira Hematoencefálica/patologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Peptídeos Semelhantes à Insulina , Células Endoteliais/metabolismo , Envelhecimento/patologia , Encéfalo/irrigação sanguínea , Fenótipo , Endotélio , Senescência Celular
17.
Geroscience ; 46(1): 21-37, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044400

RESUMO

Emerging evidence from both clinical and preclinical studies underscores the role of aging in potentiating the detrimental effects of hypertension on cerebral microhemorrhages (CMHs, or cerebral microbleeds). CMHs progressively impair neuronal function and contribute to the development of vascular cognitive impairment and dementia. There is growing evidence showing accumulation of senescent cells within the cerebral microvasculature during aging, which detrimentally affects cerebromicrovascular function and overall brain health. We postulated that this build-up of senescent cells renders the aged cerebral microvasculature more vulnerable, and consequently, more susceptible to CMHs. To investigate the role of cellular senescence in CMHs' pathogenesis, we subjected aged mice, both with and without pre-treatment with the senolytic agent ABT263/Navitoclax, and young control mice to hypertension via angiotensin-II and L-NAME administration. The aged cohort exhibited a markedly earlier onset, heightened incidence, and exacerbated neurological consequences of CMHs compared to their younger counterparts. This was evidenced through neurological examinations, gait analysis, and histological assessments of CMHs in brain sections. Notably, the senolytic pre-treatment wielded considerable cerebromicrovascular protection, effectively delaying the onset, mitigating the incidence, and diminishing the severity of CMHs. These findings hint at the potential of senolytic interventions as a viable therapeutic avenue to preempt or alleviate the consequences of CMHs linked to aging, by counteracting the deleterious effects of senescence on brain microvasculature.


Assuntos
Compostos de Anilina , Hipertensão , Senoterapia , Sulfonamidas , Humanos , Camundongos , Animais , Idoso , Envelhecimento/patologia , Senescência Celular
18.
Geroscience ; 46(1): 531-541, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953375

RESUMO

Whole brain irradiation (WBI), also known as whole brain radiation therapy (WBRT), is a well-established treatment for multiple brain metastases and as a preventive measure to reduce the risk of recurrence after surgical removal of a cerebral metastasis. However, WBI has been found to lead to a gradual decline in neurocognitive function in approximately 50% of patients who survive the treatment, significantly impacting their overall quality of life. Recent preclinical investigations have shed light on the underlying mechanisms of this adverse effect, revealing a complex cerebrovascular injury that involves the induction of cellular senescence in various components of the neurovascular unit, including endothelial cells. The emergence of cellular senescence following WBI has been implicated in the disruption of the blood-brain barrier and impairment of neurovascular coupling responses following irradiation. Building upon these findings, the present study aims to test the hypothesis that WBI-induced endothelial injury promotes endothelial dysfunction, which mimics the aging phenotype. To investigate this hypothesis, we employed a clinically relevant fractionated WBI protocol (5 Gy twice weekly for 4 weeks) on young mice. Both the WBI-treated and control mice were fitted with a cranial window, enabling the assessment of microvascular endothelial function. In order to evaluate the endothelium-dependent, NO-mediated cerebral blood flow (CBF) responses, we topically administered acetylcholine and ATP, and measured the resulting changes using laser Doppler flowmetry. We found that the increases in regional CBF induced by acetylcholine and ATP were significantly diminished in mice subjected to WBI. These findings provide additional preclinical evidence supporting the notion that WBI induces dysfunction in cerebrovascular endothelial cells, which in turn likely contributes to the detrimental long-term effects of the treatment. This endothelial dysfunction resembles an accelerated aging phenotype in the cerebrovascular system and is likely causally linked to the development of cognitive impairment. By integrating these findings with our previous results, we have deepened our understanding of the lasting consequences of WBI. Moreover, our study underscores the critical role of cerebromicrovascular health in safeguarding cognitive function over the long term. This enhanced understanding highlights the importance of prioritizing cerebromicrovascular health in the context of preserving cognitive abilities.


Assuntos
Acetilcolina , Células Endoteliais , Humanos , Animais , Camundongos , Qualidade de Vida , Encéfalo , Trifosfato de Adenosina
19.
Geroscience ; 46(2): 2017-2031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37798385

RESUMO

The demographic transition poses a significant challenge for health systems, especially in Central and Eastern European (CEE) countries, where the healthcare needs of aging populations are on the rise. This study aimed to describe and compare the health status and utilization of health services among the elderly residing in urban and rural areas of the most deprived region in Hungary. A comprehensive health survey was conducted in 2022, involving a randomly selected sample of 443 older adults (≥ 65 years) in Northeast Hungary. Multivariable logistic regression models adjusting for age, sex, education, financial status, chronic diseases, and activity limitations were used to investigate the association between type of residence and health service use. Among the study participants, 62.3% were female, 38.3% attained primary education, 12.5% reported a bad or very bad financial situation and 52.6% lived in urban areas. Overall, 24% of the elderly rated their health as very good or good (27.8% in urban and 19.7% in rural areas), while 57.8% (52.6% and 63.5% in urban and rural areas) reported limitations in daily activities. Compared to urban residents, rural residents reported lower rates of dentist visits (p = 0.006), specialist visits (p = 0.028), faecal occult blood testing (p < 0.001), colorectal cancer screening with colonoscopy (p = 0.014), and breast cancer screening (p = 0.035), and a higher rate of blood pressure measurement (p = 0.042). Multivariable models indicated that urban residence was positively associated with faecal occult blood testing (OR = 2.32, p = 0.014), but negatively associated with blood pressure (OR = 0.42, p = 0.017) and blood glucose measurements (OR = 0.48, p = 0.009). These findings highlight the influence of residence on health service utilization among older adults in Hungary. Further comprehensive studies are needed to better understand the health needs of the elderly population and to develop policies aimed at promoting healthy aging in CEE countries.


Assuntos
Serviços de Saúde , Aceitação pelo Paciente de Cuidados de Saúde , Humanos , Feminino , Idoso , Masculino , População Urbana , Hungria/epidemiologia , Nível de Saúde
20.
Adv Sci (Weinh) ; 11(10): e2303516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155460

RESUMO

Impaired cerebrovascular function contributes to the genesis of age-related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n = 21, 33.2±7.0 years) and aged (n = 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n-back) paradigm, oxy- and deoxyhemoglobin concentration changes from the frontal cortex using functional near-infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2-back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p < 0.05). Both impaired NVC and increased FC correlate with age-related decline in accuracy during the 2-back task. These findings suggest that task-related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load.


Assuntos
Disfunção Cognitiva , Acoplamento Neurovascular , Humanos , Idoso , Acoplamento Neurovascular/fisiologia , Encéfalo/fisiologia , Lobo Frontal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...