Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 95(3): 870-880, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31254401

RESUMO

We tested the prediction that a complex physical rearing environment would enhance short-term spatial memory as assessed by learning ability in a spatial navigation task in juvenile Chinook salmon Oncorhynchus tshawytscha. We reared fish in two low-density treatments, where fish were either in bare fiberglass tanks (bare) or in tanks with physical structure (complex). We also tested conventionally reared high-density hatchery fish to compare with these other experimental treatments. Our reason for including this third hatchery treatment is that the two low-density treatments, aside from the manipulation of structure, followed a rearing programme that is designed to produce fish with more wild-like characteristics. We tested individually marked fish for seven consecutive days and recorded movement and time to exit a testing maze. Stimulus conspecific fish outside the exit of the maze provided positive reinforcement for test fish. Fish from the bare treatment were less likely to exit the start box compared with fish in the complex and hatchery treatments. However, fish in the hatchery treatment were significantly more likely to exit the maze on their own compared with both the bare and complex treatments. Hatchery fish effectively learned the task as shown by a decrease in the number of mistakes over time, but the number of mistakes was significantly greater on the first day of trials. Increasing habitat complexity with structure may not necessarily promote spatial learning ability, but differences between hatchery and experimental treatments in rearing density and motivation to be near conspecifics likely led to observed behavioural differences.


Assuntos
Criação de Animais Domésticos , Pesqueiros , Salmão/fisiologia , Aprendizagem Espacial/fisiologia , Animais
2.
Ecol Evol ; 8(1): 778-789, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321913

RESUMO

Variation in early life history traits often leads to differentially expressed morphological and behavioral phenotypes. We investigated whether variation in egg size and emergence timing influence subsequent morphology associated with migration timing in juvenile spring Chinook Salmon, Oncorhynchus tshawytscha. Based on evidence for a positive relationship between growth rate and migration timing, we predicted that fish from small eggs and fish that emerged earlier would have similar morphology to fall migrants, while fish from large eggs and individuals that emerged later would be more similar to older spring yearling migrants. We sorted eyed embryos within females into two size categories: small and large. We collected early and late-emerging juveniles from each egg size category. We used landmark-based geometric morphometrics and found that egg size appears to drive morphological differences. Egg size shows evidence for an absolute rather than relative effect on body morphology. Fish from small eggs were morphologically more similar to fall migrants, while fish from large eggs were morphologically more similar to older spring yearling migrants. Previous research has shown that the body morphology of fish that prefer the surface or bottom location in a tank soon after emergence also correlates with the morphological variations between wild fall and spring migrants, respectively. We found that late-emerging fish spent more time near the surface. Our study shows that subtle differences in early life history characteristics may correlate with a diversity of future phenotypes.

3.
Environ Toxicol Chem ; 35(8): 2092-102, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26762215

RESUMO

Many anthropogenic disturbances have contributed to the decline of Pacific lampreys (Entosphenus tridentatus), but potential negative effects of contaminants on lampreys are unclear. Lamprey ammocoetes are the only detritivorous fish in the lower Willamette River, Oregon, USA, and have been observed in Portland Harbor sediments. Their long benthic larval stage places them at risk from the effects of contaminated sediment. The authors developed experimental methods to assess the effects of contaminated sediment on the growth and behavior of field-collected ammocoetes reared in a laboratory. Specifically, they developed methods to assess individual growth and burrowing behavior. Burrowing performance demonstrated high variability among contaminated sediments; however, ammocoetes presented with noncontaminated reference sediment initiated burrowing more rapidly and completed it faster. Ammocoete reemergence from contaminated sediments suggests avoidance of some chemical compounds. The authors conducted long-term exposure experiments on individually held ammocoetes using sediment collected from their native Siletz River, which included the following: contaminated sediments collected from 9 sites within Portland Harbor, 2 uncontaminated reference sediments collected upstream, 1 uncontaminated sediment with characteristics similar to Portland Harbor sediments, and clean sand. They determined that a 24-h depuration period was sufficient to evaluate weight changes and observed no mortality or growth effects in fish exposed to any of the contaminated sediments. However, the effect on burrowing behavior appeared to be a sensitive endpoint, with potentially significant implications for predator avoidance. Environ Toxicol Chem 2016;35:2092-2102. © 2016 SETAC.


Assuntos
Comportamento Animal/efeitos dos fármacos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Lampreias/fisiologia , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Lampreias/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/fisiologia , Oregon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...