Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 17(11): e2200029, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35876277

RESUMO

Cysteine is considered an essential amino acid in the cultivation of Chinese hamster ovary (CHO) cells. An optimized cysteine supply during fed-batch cultivation supports the protein production capacity of recombinant CHO cell lines. However, we observed that CHO production cell lines seeded at low cell densities in chemically defined media enriched with cysteine greater than 2.5 mm resulted in markedly reduced cell growth during passaging, hampering seed train performance and scale-up. To investigate the underlying mechanism, seeding cell densities and initial cysteine concentrations ranging from low to high cysteine concentrations were varied followed by an analysis of cell culture performance. Additionally, cell cycle analysis, intracellular quantification of reactive oxygen species (ROS) as well as transcriptomic analyses by next-generation sequencing were carried out. Our results demonstrate that CHO cells seeded at low cell densities at high initial cysteine concentrations encountered increased oxidative stress leading to a p21-mediated cell cycle arrest in the G1/S phase. The resulting oxidative stress caused redox imbalance in the endoplasmic reticulum and activation of the unfolded protein response as well as the major antioxidant nuclear factor-like 2 response pathways. Potential signature genes related to oxidative stress and the inhibition of the pentose phosphate pathway were identified in the study. Finally, the study presents that seeding cells at a higher concentration counteract oxidative stress in cysteine-enriched cell culture media.


Assuntos
Cisteína , Estresse Oxidativo , Cricetinae , Animais , Células CHO , Cricetulus , Estresse Oxidativo/genética , Técnicas de Cultura de Células , Meios de Cultura
2.
Biotechnol Bioeng ; 118(5): 1793-1804, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33491766

RESUMO

Process intensification by application of perfusion mode in pre-stage bioreactors and subsequent inoculation of cell cultures at high seeding densities (HSD) has the potential to meet the increasing requirements of future manufacturing demands. However, process development is currently restrained by a limited understanding of the cell's requirements under these process conditions. The goal of this study was to use extended metabolite analysis and metabolic modeling for targeted optimization of HSD cultivations. The metabolite analysis of HSD N-stage cultures revealed accumulation of inhibiting metabolites early in the process and flux balance analysis led to the assumption that reactive oxygen species (ROS) were contributing to the fast decrease in cell viability. Based on the metabolic analysis an optimized feeding strategy with lactate and cysteine supplementation was applied, resulting in an increase in antibody titer of up to 47%. Flux balance analysis was further used to elucidate the surprisingly strong synergistic effect of lactate and cysteine, indicating that increased lactate uptake led to reduced ROS formation under these conditions whilst additional cysteine actively reduced ROS via the glutathione pathway. The presented results finally demonstrate the benefit of modeling approaches for process intensification as well as the potential of HSD cultivations for biopharmaceutical manufacturing.


Assuntos
Técnicas de Cultura de Células/métodos , Análise do Fluxo Metabólico/métodos , Modelos Biológicos , Animais , Células CHO , Células Cultivadas , Cromatografia Líquida , Cricetinae , Cricetulus , Espectrometria de Massas em Tandem
3.
Biotechnol Bioeng ; 118(3): 1091-1104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33200817

RESUMO

A high degree of charge heterogeneity is an unfavorable phenomenon commonly observed for therapeutic monoclonal antibodies (mAbs). Removal of these impurities during manufacturing often comes at the cost of impaired step yields. A wide spectrum of posttranslational and chemical modifications is known to modify mAb charge. However, a deeper understanding of underlying mechanisms triggering charged species would be beneficial for the control of mAb charge variants during bioprocessing. In this study, a comprehensive analytical investigation was carried out to define the root causes and mechanisms inducing acidic variants of an immunoglobulin G1-derived mAb. Characterization of differently charged species by liquid chromatography-mass spectrometry revealed the reduction of disulfide bonds in acidic variants, which is followed by cysteinylation and glutathionylation of cysteines. Importantly, biophysical stability and integrity of the mAb are not affected. By in vitro incubation of the mAb with the reducing agent cysteine, disulfide bond degradation was directly linked to an increase of numerous acidic species. Modifying the concentrations of cysteine during the fermentation of various mAbs illustrated that redox potential is a critical aspect to consider during bioprocess development with respect to charge variant control.


Assuntos
Anticorpos Monoclonais , Cisteína/química , Dissulfetos/química , Imunoglobulina G , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Técnicas de Cultura de Células , Cromatografia Líquida , Cricetulus , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação
4.
Eng Life Sci ; 19(10): 666-680, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32624960

RESUMO

Biopharmaceutical manufacturing processes can be affected by variability in cell culture media, e.g. caused by raw material impurities. Although efforts have been made in industry and academia to characterize cell culture media and raw materials with advanced analytics, the process of industrial cell culture media preparation itself has not been reported so far. Within this publication, we first compare mid-infrared and two-dimensional fluorescence spectroscopy with respect to their suitability as online monitoring tools during cell culture media preparation, followed by a thorough assessment of the impact of preparation parameters on media quality. Through the application of spectroscopic methods, we can show that media variability and its corresponding root cause can be detected online during the preparation process. This methodology is a powerful tool to avoid batch failure and is a valuable technology for media troubleshooting activities. Moreover, in a design of experiments approach, including additional liquid chromatography-mass spectrometry analytics, it is shown that variable preparation parameters such as temperature, power input and preparation time can have a strong impact on the physico-chemical composition of the media. The effect on cell culture process performance and product quality in subsequent fed-batch processes was also investigated. The presented results reveal the need for online spectroscopic methods during the preparation process and show that media variability can already be introduced by variation in media preparation parameters, with a potential impact on scale-up to a commercial manufacturing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...