Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350477

RESUMO

The filterscope diagnostic on DIII-D utilizes photomultiplier tubes to measure visible light emission from the plasma. The system has undergone a substantial upgrade since previous attempts to cross-calibrate the filterscope with other spectroscopic diagnostics were unsuccessful. The optics now utilize a dichroic mirror to initially split the light at nearly 99% transmission or reflectance for light below or above 550 nm. This allows the system to measure Dα emission without degrading visible light emission from the plasma for wavelengths below 550 nm (to measure Dß, Dγ, W-I, C-III, etc.). Additional optimization of the optical components and calibration techniques reduce the error in the signal up to 10% in some channels compared to previous methods. Cross-calibration measurements with two other high resolution spectroscopic diagnostics now show excellent agreement for the first time. This expands the capabilities of the filterscope system allowing measurement of divertor detachment, emission profiles, edge-localized mode behavior, and plasma-wall interactions. It also enables direct comparisons against calculations from boundary plasma simulations. These were not possible before.

2.
Rev Sci Instrum ; 89(10): 10D105, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399672

RESUMO

The present work concerns the measurements obtained with the Tungsten (W) Environment in Steady-state Tokamak (WEST) visible spectroscopy system during the first experimental campaign. This system has been developed in the framework of the WEST project that equipped the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFC) in view of preparing for ITER operation. The goal of this diagnostic is to measure the PFC sources and the deuterium recycling with spectral, spatial, and temporal resolution adapted to the predicted power deposition profiles on the objects observed. Three kinds of PFCs are monitored: the Ion Cyclotron Resonance Heating (ICRH) antenna and Low Hybrid Current Drive (LHCD) launcher W limiters; one of the 6 W inner bumpers; and the upper and lower W divertors. Large-aperture in-vessel actively cooled optical systems (f-number ∼ 3) were installed for each view and connected to optical fibres. A total of 240 optical fibers can be distributed on various detection systems including a fast response-time, multi-channel, filtered photodetector-based "Filterscope" system, developed by Oak Ridge National Laboratory (USA) as well as grating spectrometers optimized for multi-sightline analysis. The first WEST experimental campaign conducted in 2017 has been dedicated to plasma start-up development during which the visible spectroscopy system has provided crucial information related to the impurity content first and then impurity sources. The diagnostic setup for that first experimental campaign was limited to the inner bumper and outer limiters but was sufficient to demonstrate that the optical setup was in accordance with the specifications. The radiance calibration procedure allowed us to estimate fluxes from the main limiter of about 8 × 1018 atoms/(s m2) and to show a first W source radial profile along the outboard limiter.

3.
Rev Sci Instrum ; 89(10): 10I115, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399941

RESUMO

Triplet sets of replaceable graphite rod collector probes (CPs), each with collection surfaces on opposing faces and oriented normal to the magnetic field, were inserted at the outboard mid-plane of DIII-D to study divertor tungsten (W) transport in the Scrape-Off Layer (SOL). Each CP collects particles along field lines with different parallel sampling lengths (determined by the rod diameters and SOL transport) giving radial profiles from the main wall inward to R-R sep ∼ 6 cm. The CPs were deployed in a first-of-a-kind experiment using two toroidal rings of distinguishable isotopically enriched, W-coated divertor tiles installed at 2 poloidal locations in the divertor. Post-mortem Rutherford backscatter spectrometry of the surface of the CPs provided areal density profiles of elemental W coverage. Higher W content was measured on the probe side facing along the field lines toward the inner target indicating higher concentration of W in the plasma upstream of the CP, even though the W-coated rings were in the outer target region of the divertor. Inductively coupled plasma mass spectroscopy validates the isotopic tracer technique through analysis of CPs exposed during L-mode discharges with the outer strike point on the isotopically enriched W coated-tile ring. The contribution from each divertor ring of W to the deposition profiles found on the mid-plane collector probes was able to be de-convoluted using a stable isotope mixing model. The results provided quantitative information on the W source and transport from specific poloidal locations within the lower divertor region.

4.
Rev Sci Instrum ; 87(11): 11E711, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910581

RESUMO

Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory's Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine Te and ne. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent Te and ne localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional "images" of Te and ne in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique.

5.
Rev Sci Instrum ; 87(11): 11D606, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910364

RESUMO

A combined IR and visible camera system [G. A. Wurden et al., "A high resolution IR/visible imaging system for the W7-X limiter," Rev. Sci. Instrum. (these proceedings)] and a filterscope system [R. J. Colchin et al., Rev. Sci. Instrum. 74, 2068 (2003)] were implemented together to obtain spectroscopic data of limiter and first wall recycling and impurity sources during Wendelstein 7-X startup plasmas. Both systems together provided excellent temporal and spatial spectroscopic resolution of limiter 3. Narrowband interference filters in front of the camera yielded C-III and Hα photon flux, and the filterscope system provided Hα, Hß, He-I, He-II, C-II, and visible bremsstrahlung data. The filterscopes made additional measurements of several points on the W7-X vacuum vessel to yield wall recycling fluxes. The resulting photon flux from both the visible camera and filterscopes can then be compared to an EMC3-EIRENE synthetic diagnostic [H. Frerichs et al., "Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for Wendelstein 7-X," Rev. Sci. Instrum. (these proceedings)] to infer both a limiter particle flux and wall particle flux, both of which will ultimately be used to infer the complete particle balance and particle confinement time τP.

6.
Phys Rev Lett ; 117(13): 135001, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715095

RESUMO

New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agrees qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. These processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.

7.
Phys Rev Lett ; 110(24): 245001, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25165932

RESUMO

High repetition rate injection of deuterium pellets from the low-field side (LFS) of the DIII-D tokamak is shown to trigger high-frequency edge-localized modes (ELMs) at up to 12× the low natural ELM frequency in H-mode deuterium plasmas designed to match the ITER baseline configuration in shape, normalized beta, and input power just above the H-mode threshold. The pellet size, velocity, and injection location were chosen to limit penetration to the outer 10% of the plasma. The resulting perturbations to the plasma density and energy confinement time are thus minimal (<10%). The triggered ELMs occur at much lower normalized pedestal pressure than the natural ELMs, suggesting that the pellet injection excites a localized high-n instability. Triggered ELMs produce up to 12× lower energy and particle fluxes to the divertor, and result in a strong decrease in plasma core impurity density. These results show for the first time that shallow, LFS pellet injection can dramatically accelerate the ELM cycle and reduce ELM energy fluxes on plasma facing components, and is a viable technique for real-time control of ELMs in ITER.

8.
Rev Sci Instrum ; 83(10): 10D722, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126896

RESUMO

Radial profiles of electron temperature and density are measured at high spatial (∼1 mm) and temporal (≥10 µs) resolution using a thermal supersonic helium jet. A highly accurate detection system is applied to well-developed collisional-radiative model codes to produce the profiles. Agreement between this measurement and an edge Thomson scattering measurement is found to be within the error bars (≲20%). The diagnostic is being used to give profiles near the ion cyclotron resonant heating antenna on TEXTOR to better understand RF coupling to the core.

9.
Rev Sci Instrum ; 81(10): 10E533, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034060

RESUMO

Tangentially viewing soft x-ray (SXR) cameras are capable of detecting nonaxisymmetric plasma structures in magnetically confined plasmas. They are particularly useful for studying stationary perturbations or phenomenon that occur on a timescale faster than the plasma rotation period. Tangential SXR camera diagnostics are planned for the DIII-D and NSTX tokamaks to elucidate the static edge magnetic structure during the application of 3D perturbations. To support the design of the proposed diagnostics, a synthetic diagnostic model was developed using the CHIANTI database to estimate the SXR emission. The model is shown to be in good agreement with the measurements from an existing tangential SXR camera diagnostic on NSTX.

10.
Rev Sci Instrum ; 81(10): 10E534, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034061

RESUMO

A new tangential two-dimensional soft x-ray imaging system (SXRIS) is being designed to examine the edge island structure in the lower X-point region of DIII-D. Plasma shielding and/or amplification of the calculated vacuum islands may play a role in the suppression of edge-localized modes via resonant magnetic perturbations (RMPs). The SXRIS is intended to improve the understanding of three-dimensional (3D) phenomena associated with RMPs. This system utilizes a tangential view with a pinhole imaging system and spectral filtering with beryllium foils. SXR emission is chosen to avoid line radiation and allows suitable signal at the top of a H-mode pedestal where T(e)∼1-2 keV. A synthetic diagnostic calculation based on 3D SXR emissivity estimates is used to help assess signal levels and resolution of the design. A signal-to-noise ratio of 10 at 1 cm resolution is expected for the perturbed signals, which are sufficient to resolve most of the predicted vacuum island sizes.

11.
Phys Rev Lett ; 104(4): 045001, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20366719

RESUMO

The application of nonaxisymmetric magnetic fields is shown to destabilize edge-localized modes (ELMs) during otherwise ELM-free periods of discharges in the National Spherical Torus Experiment (NSTX). Profile analysis shows the applied fields increased the temperature and pressure gradients, decreasing edge stability. This robust effect was exploited for a new form of ELM control: the triggering of ELMs at will in high performance H mode plasmas enabled by lithium conditioning, yielding high time-averaged energy confinement with reduced core impurity density and radiated power.

12.
Phys Rev Lett ; 103(16): 165005, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19905705

RESUMO

Good alignment of the magnetic field line pitch angle with the mode structure of an external resonant magnetic perturbation (RMP) field is shown to induce modulation of the pedestal electron pressure p(e) in high confinement high rotation plasmas at the DIII-D tokamak with a shape similar to ITER, the next step tokamak experiment. This is caused by an edge safety factor q95 resonant enhancement of the thermal transport, while in contrast, the RMP induced particle pump out does not show a significant resonance. The measured p(e) reduction correlates to an increase in the modeled stochastic layer width during pitch angle variations matching results from resistive low rotation plasmas at the TEXTOR tokamak. These findings suggest a field line pitch angle resonant formation of a stochastic magnetic edge layer as an explanation for the q95 resonant character of type-I edge localized mode suppression by RMPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...