Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 115, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922761

RESUMO

BACKGROUND: Termites are among the most successful insects on Earth and can feed on a broad range of organic matter at various stages of decomposition. The termite gut system is often referred to as a micro-reactor and is a complex structure consisting of several components. It includes the host, its gut microbiome and fungal gardens, in the case of fungi-growing higher termites. The digestive tract of soil-feeding higher termites is characterised by radial and axial gradients of physicochemical parameters (e.g. pH, O2 and H2 partial pressure), and also differs in the density and structure of residing microbial communities. Although soil-feeding termites account for 60% of the known termite species, their biomass degradation strategies are far less known compared to their wood-feeding counterparts. RESULTS: In this work, we applied an integrative multi-omics approach for the first time at the holobiont level to study the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. We relied on 16S rRNA gene community profiling, metagenomics and (meta)transcriptomics to uncover the distribution of functional roles, in particular those related to carbohydrate hydrolysis, across different gut compartments and among the members of the bacterial community and the host itself. We showed that the Labiotermes gut was dominated by members of the Firmicutes phylum, whose abundance gradually decreased towards the posterior segments of the hindgut, in favour of Bacteroidetes, Proteobacteria and Verrucomicrobia. Contrary to expectations, we observed that L. labralis gut microbes expressed a high diversity of carbohydrate active enzymes involved in cellulose and hemicelluloses degradation, making the soil-feeding termite gut a unique reservoir of lignocellulolytic enzymes with considerable biotechnological potential. We also evidenced that the host cellulases have different phylogenetic origins and structures, which is possibly translated into their different specificities towards cellulose. From an ecological perspective, we could speculate that the capacity to feed on distinct polymorphs of cellulose retained in soil might have enabled this termite species to widely colonise the different habitats of the Amazon basin. CONCLUSIONS: Our study provides interesting insights into the distribution of the hydrolytic potential of the highly compartmentalised higher termite gut. The large number of expressed enzymes targeting the different lignocellulose components make the Labiotermes worker gut a relevant lignocellulose-valorising model to mimic by biomass conversion industries.


Assuntos
Isópteros , Animais , Isópteros/genética , Solo , Filogenia , RNA Ribossômico 16S/genética , Celulose/metabolismo
2.
Commun Biol ; 3(1): 275, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483294

RESUMO

Miscanthus sp. biomass could satisfy future biorefinery value chains. However, its use is largely untapped due to high recalcitrance. The termite and its gut microbiome are considered the most efficient lignocellulose degrading system in nature. Here, we investigate at holobiont level the dynamic adaptation of Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We use an integrative omics approach combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Modified gene expression profiles of gut bacteria suggest a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to closely related species supports the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.


Assuntos
Bactérias/enzimologia , Microbioma Gastrointestinal , Expressão Gênica , Isópteros/fisiologia , Poaceae/química , Adaptação Biológica , Animais , Dieta , Digestão , Trato Gastrointestinal/fisiologia
3.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152018

RESUMO

Increased hydrolysis of easily digestible biomass may lead to acidosis of anaerobic reactors and decreased methane production. Previously, it was shown that the structure of microbial communities changed during acidosis; however, once the conditions are back to optimal, biogas (initially CO2) production quickly restarts. This suggests the retention of the community functional redundancy during the process failure. In this study, with the use of metagenomics and downstream bioinformatics analyses, we characterize the carbohydrate hydrolytic potential of the microbial community, with a special focus on acidosis. To that purpose, carbohydrate-active enzymes were identified, and to further link the community hydrolytic potential with key microbes, bacterial genomes were reconstructed. In addition, we characterized biochemically the specificity and activity of selected enzymes, thus verifying the accuracy of the in silico predictions. The results confirm the retention of the community hydrolytic potential during acidosis and indicate Bacteroidetes to be largely involved in biomass degradation. Bacteroidetes showed higher diversity and genomic content of carbohydrate hydrolytic enzymes that might favor the dominance of this phylum over other bacteria in some anaerobic reactors. The combination of bioinformatic analyses and activity tests enabled us to propose a model of acetylated glucomannan degradation by BacteroidetesIMPORTANCE The enzymatic hydrolysis of lignocellulosic biomass is mainly driven by the action of carbohydrate-active enzymes. By characterizing the gene profiles at the different stages of the anaerobic digestion experiment, we showed that the microbiome retains its hydrolytic functional redundancy even during severe acidosis, despite significant changes in taxonomic composition. By analyzing reconstructed bacterial genomes, we demonstrate that Bacteroidetes hydrolytic gene diversity likely favors the abundance of this phylum in some anaerobic digestion systems. Further, we observe genetic redundancy within the Bacteroidetes group, which accounts for the preserved hydrolytic potential during acidosis. This work also uncovers new polysaccharide utilization loci involved in the deconstruction of various biomasses and proposes the model of acetylated glucomannan degradation by Bacteroidetes Acetylated glucomannan-enriched biomass is a common substrate for many industries, including pulp and paper production. Using naturally evolved cocktails of enzymes for biomass pretreatment could be an interesting alternative to the commonly used chemical pretreatments.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Metagenoma , Microbiota , Anaerobiose , Bacteroidetes/metabolismo , Biomassa , Metabolismo dos Carboidratos , Concentração de Íons de Hidrogênio , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...