Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37570203

RESUMO

A growing number of people are interested in using silver nanowires (AgNWs) as potential transparent and conductive materials. The production of high-performance and high-throughput AgNWs was successfully optimized in this work using a one-step, straightforward, and reproducible modified polyol approach. The factors influencing the morphology of the silver nanowires have undergone extensive research in order to determine the best-optimized approach for producing AgNWs. The best AgNW morphology, with a length of more than 50 m and a diameter of less than 35 nm (aspect ratio is higher than 1700), was discovered to be produced by a mixture of 44 mM AgNO3, 134 mM polyvinylpyrrolidone (PVP) (Mo.Wt 40,000), and 2.4 mM KCl at 160 °C with a stirring rate of 100 rpm. With our improved approach, the overall reaction time was cut from almost an hour with the conventional polyol method to a few minutes. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet (UV) spectroscopy were used to characterize AgNWs. The resultant AgNWs' dispersion was cleaned using a centrifuge multiple times before being deposited on glass and PET substrates at room temperature. In comparison to commercial, delicate, and pricey indium-doped tin oxide (ITO) substrates, the coated samples displayed exceptionally good sheet resistance of 17.05/sq and optical haze lower than 2.5%. Conclusions: Using a simple one-step modified polyol approach, we were able to produce reproducible thin sheets of AgNWs that made excellent, flexible transparent electrodes.

2.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514455

RESUMO

This research paper aims to fabricate flexible PVA/Cs/TiO2 nanocomposite films consisting of polyvinyl alcohol (PVA), chitosan (Cs), and titanium oxide (TiO2) for application in energy storage devices. The samples were analyzed using X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray (EDX) techniques. The impact of TiO2 on the electrical impedance, conductivity, permittivity, and energy efficiency of the PVA/Cs was determined in a frequency range of 100 Hz to 5 GHz. The XRD, FTIR, and EDX results showed the successful fabrications of the PVA/Cs/TiO2. The SEM and AFM images illustrated that the TiO2 was loaded and distributed homogenously in PVA/Cs chains. In addition, the electrical conductivity was enhanced from 0.04 × 10-7 S.cm-1 of PVA/Cs to 0.25 × 10-7 S.cm-1 and 5.75 × 10-7 S.cm-1, respectively, for the composite PVA/Cs/0.01TiO2 and PVA/Cs/0.1TiO2, and the dielectric constant grew from 2.46 for PVA/Cs to 7.38 and 11.93, respectively. These results revealed that modifications were made to the produced films, paving the way for using the composite PVA/Cs/TiO2 films in different energy applications, such as electronic circuits and supercapacitors.

3.
Biomedicines ; 11(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37189792

RESUMO

This study highlights the use of 89Zr-oxalate in diagnostic applications with the help of WinAct and IDAC2.1 software. It presents the biodistribution of the drug in various organs and tissues, including bone, blood, muscle, liver, lung, spleen, kidneys, inflammations, and tumors, and analyzes the maximum amount of nuclear transformation per Bq intake for each organ. The retention time of the maximum nuclear transformation and the absorbed doses of the drug in various organs and tissues are also examined. Data from clinical and laboratory studies on radiopharmaceuticals are used to estimate the coefficients of transition. The accumulation and excretion of the radiopharmaceutical in the organs is assumed to follow an exponential law. The coefficients of transition from the organs to the blood and vice versa are estimated using a combination of statistical programs and digitized data from the literature. WinAct and IDAC 2.1 software are used to calculate the distribution of the radiopharmaceutical in the human body and to estimate the absorbed doses in organs and tissues. The results of this study can provide valuable information for the biokinetic modeling of wide-spectrum diagnostic radiopharmaceuticals. The results show that 89Zr-oxalate has a high affinity for bones and a relatively low impact on healthy organs, making it helpful in targeting bone metastases. This study provides valuable information for further research on the development of this drug for potential clinical applications.

4.
Materials (Basel) ; 16(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048969

RESUMO

Iron-doped Zinc oxide nanoparticles were produced by the sol-gel combustion method. This study aims to see how iron doping affects the structural, optical, and photocatalytic characteristics of ZnO composites. XRD examined all samples to detect the structural properties and proved that all active materials are a single hexagonal phase. The morphology and particle size were investigated by TEM. Computational Density functional theory (DFT) calculation of the band structure, density of state, and charge distributions for ZnO were investigated in comparison with ZnO dope iron. We reported the application results of ZnO doped Fe for Methylene blue dye removal under photocatalytic degradation effect. The iron concentrations affect the active material's band gap, producing higher photocatalytic performance. The acquired results could be employed to enhance the photocatalytic properties of ZnO.

5.
Materials (Basel) ; 16(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37109873

RESUMO

Solar cells in superstrate arrangement need a protective cover glass as one of its main components. The effectiveness of these cells is determined by the cover glass's low weight, radiation resistance, optical clarity, and structural integrity. Damage to the cell covers brought on by exposure to UV irradiation and energetic radiation is thought to be the root cause of the ongoing issue of a reduction in the amount of electricity that can be generated by solar panels installed on spacecraft. Lead-free glasses made of xBi2O3-(40 - x)CaO-60P2O5 (x = 5, 10, 15, 20, 25, and 30 mol%) were created using the usual approach of melting at a high temperature. The amorphous nature of the glass samples was confirmed using X-ray diffraction. At energies of 81, 238, 356, 662, 911, 1173, 1332, and 2614 keV, the impact of various chemical compositions on gamma shielding in a phospho-bismuth glass structure was measured. The evaluation of gamma shielding revealed that the results of the mass attenuation coefficient of glasses increase as the Bi2O3 content increases but decrease as the photon energy increases. As a result of the study conducted on the radiation-deflecting properties of ternary glass, a lead-free low-melting phosphate glass that exhibited outstanding overall performance was developed, and the optimal composition of a glass sample was identified. The 60P2O5-30Bi2O3-10CaO glass combination is a viable option for use in radiation shielding that does not include lead.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36078432

RESUMO

The current contribution goal is to measure the distribution of the radionuclide within the exposed rock units of southwestern Sinai, Seih-Sidri area, and assess the radiological risk. Gneisses, older granites, younger gabbro, younger granites, and post granitic dikes (pegmatites) are the main rock units copout in the target area. Radioactivity, as well as radiological implications, were investigated for forty-three samples from gneisses (seven hornblende biotite gneiss and seven biotite gneiss), older granites (fourteen samples), and younger granites (fifteen samples of syenogranites) using NaI (Tl) scintillation detector. External and internal hazard index (Hex, Hin), internal and external level indices (Iα, Iγ), absorbed dose rates in the air (D), the annual effective dose equivalent (AED), radium equivalent activity (Raeq), annual gonadal dose (AGDE), excess lifetime cancer risk (ELCR), and the value of Upper Continental Core 232Th/238U mass fractions were determined from the obtained values of 238U, 232Th and 40K for the examined rocks of Seih-Sidri area. The average 238U mg/kg in hornblende biotite gneiss and biotite gneiss, older granites, and syenogranites is 2.3, 2.1, 2.7, and 8.4 mg/kg, respectively, reflecting a relatively higher concentration of uranium content in syenogranites. The results suggest that using these materials may pose risks to one's radiological health.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Urânio , Radioisótopos de Potássio/análise , Monitoramento de Radiação/métodos , Radioisótopos/análise , Saúde Radiológica , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Tório/análise , Urânio/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-35805783

RESUMO

The specific activity of U-238 and Th-232, as well as K-40 radionuclides, in twenty-nine investigated medicinal herbs used in Egypt has been measured using a high-purity germanium (HP Ge) detector. The measured values ranged from the BDL to 20.71 ± 1.52 with a mean of 7.25 ± 0.54 (Bq kg-1) for uranium-238, from the BDL to 29.35 ± 1.33 with a mean of 7.78 ± 0.633 (Bq kg-1) for thorium-232, and from 172 ± 5.85 to 1181.2 ± 25.5 with a mean of 471.4 ± 11.33 (Bq kg-1) for potassium-40. Individual herbs with the highest activity levels were found to be 20.71 ± 1.52 (Bq kg-1) for uranium-238 (H4, Thyme herb), 29.35 ± 1.33 (Bq kg-1) for thorium-232 (H20, Cinnamon), and 1181.2 ± 25.5 (Bq kg-1) for potassium-40 (H24, Worm-wood). (AACED) Ingestion-related effective doses over the course of a year of uranium-238 and thorium-232, as well as potassium-40 estimated from measured activity concentrations, are 0.002304 ± 0.00009 (minimum), 0.50869 ± 0.0002 (maximum), and 0.0373 ± 0.0004 (average)(mSv/yr). Radium equivalent activity (Raeq), annual gonadal dose equivalent (AGDE), absorbed gamma dose rate (Doutdoor, Dindoor), gamma representative level index (I), annual effective dose (AEDtotal), external and internal hazard index (Hex, Hin), and excess lifetime cancer risk were determined in medicinal plants (ELCR). The radiological hazards assessment revealed that the investigated plant species have natural radioactivity levels that are well within the internationally recommended limit. This is the first time that the natural radioactivity of therapeutic plants has been measured in Egypt. In addition, no artificial radionuclide (for example, 137Cs) was discovered in any of the samples. Therefore, the current findings are intended to serve as the foundation for establishing a standard safety and guideline for using these therapeutic plants in Egypt.


Assuntos
Plantas Medicinais , Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Urânio , Radiação de Fundo , Radioisótopos de Césio , Radioisótopos de Potássio/análise , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Tório/análise , Urânio/análise
8.
Materials (Basel) ; 14(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34772153

RESUMO

A new glass system (50-x)P2O5-20B2O3-5Al2O3-25Na2O-xCoO was manufactured using a standard melt quenching procedure, where 1≤ x ≤ 12 mol%. The characteristics of boro-phosphate-glasses containing CoO have been studied. The effect of CoO on the radiation-protective properties of glasses was established. The density of the prepared glasses as a function of CoO increased. XRD was used to check the vitreous structure of samples. Fourier-transform infrared (FTIR) spectroscopy was used to study the structure of each sample. FTIR demonstrated that connections grew as CoO/P2O5 levels increased, and the FTIR spectra shifted to higher wavenumbers. The increment of CoO converts non-bridging oxygens associated with phosphate structural units into bridging oxygens. This process increases the concentration of BO4 structural units and creates new, strong and stable bonds B-O-P, i.e., there is polymerization of the boro-phosphate glass network. With an increase in the ratio of CoO/P2O5 in the produced samples, ultrasonic velocities and elastic moduli were observed to increase. The coefficients of linear and mass attenuation, the transmittance of photons in relation to the photon energy, the efficiency of radiation protection in relation to the photon energy, and the thickness of the absorber were modeled using these two methods (experimental and theoretical). From the obtained values, it can be concluded that the 12Co sample containing 12 mol% will play the most influential role in radiation protection. An increase in the content of cobalt-I oxide led to a significant increase in the linear and mass attenuation coefficient values, which directly contributes to the development of the radiation-protective properties of glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...