Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 213: 108796, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38901229

RESUMO

Nanotechnology has emerged as a promising field with the potential to revolutionize agriculture, particularly in enhancing plant defense mechanisms. Nanoparticles (NPs) are instrumental in plant defense priming, where plants are pre-exposed to controlled levels of stress to heighten their alertness and responsiveness to subsequent stressors. This process improves overall plant performance by enabling quicker and more effective responses to secondary stimuli. This review explores the application of NPs as priming agents, utilizing their unique physicochemical properties to bolster plants' innate defense mechanisms. It discusses key findings in NP-based plant defense priming, including various NP types such as metallic, metal oxide, and carbon-based NPs. The review also investigates the intricate mechanisms by which NPs interact with plants, including uptake, translocation, and their effects on plant physiology, morphology, and molecular processes. Additionally, the review examines how NPs can enhance plant responses to a range of stressors, from pathogen attacks and herbivore infestations to environmental stresses. It also discusses NPs' ability to improve plants' tolerance to abiotic stresses like drought, salinity, and heavy metals. Safety and regulatory aspects of NP use in agriculture are thoroughly addressed, emphasizing responsible and ethical deployment for environmental and human health safety. By harnessing the potential of NPs, this approach shows promise in reducing crop losses, increasing yields, and enhancing global food security while minimizing the environmental impact of traditional agricultural practices. The review concludes by emphasizing the importance of ongoing research to optimize NP formulations, dosages, and delivery methods for practical application in diverse agricultural settings.

2.
Macromol Rapid Commun ; : e2400239, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794989

RESUMO

Polymeric foams derived from bio-based resources and capable of self-healing and recycling ability are of great demand to fulfill various applications and address environmental concerns related to accumulation of plastic wastes. In this article, a set of polyester-based covalent adaptable biofoams (CABs) synthesized from carbohydrates and other bio-derived precursors under catalyst free conditions to offer a sustainable alternative to conventional toxic isocyanate-based polyurethane foams is reported. The dynamic ß-keto carboxylate linkages present in these biofoams impart self-healing ability and recyclability to these samples. These CABs display adequate tensile properties especially compressive strength (≤123 MPa) and hysteresis behavior. The CABs swiftly stress relax at 150 °C and are reprocessable under similar temperature conditions. These biofoams have displayed potential for use as attachment on solar photovoltaics to augment the output efficiency. These CABs with limited swellability in polar protic solvents and adequate mechanical resilience are suitable for other commodity applications.

3.
J Phys Condens Matter ; 35(49)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37586379

RESUMO

Out-of-equilibrium investigation of strongly correlated materials deciphers the hidden equilibrium properties. Herein, we have investigated the out-of-equilibrium magnetic properties of polycrystalline Dy2Ti2O7and Ho2Ti2O7spin ices. Our experimental findings reveal the emergence of magnetic field-induced anomalous hysteresis observed solely in temperature-and magnetic field-dependent AC susceptibility measurements. The observed memory effect (anomalous thermomagnetic hysteresis) exhibits a strong dependence on both thermal and non-thermal driving variables. Owing to the non-collinear spin structure, the applied DC bias magnetic field produces quenched disorder sites in the cooperative Ising spin matrix and suppresses the spin-phonon coupling. These quench disorders create a dynamic spin correlation, having slow spin relaxation and quick decay time, which additionally contribute to AC susceptibility. The initial conditions and measurement protocol decide the magnitude and sign of this dynamical term contributing to AC susceptibility. It is being suggested that such out-of-equilibrium properties arise from the combined influences of geometric frustration, disorder, and the cooperative nature of spin dynamics exhibited by these materials.

4.
J Orthod Sci ; 12: 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351401

RESUMO

OBJECTIVE: To evaluate in-vitro surface characteristics and frictional properties of orthodontic stainless steel and beta-titanium archwires after surface modification with different concentrations and coating time of titanium oxide (TiO2) nanoparticles by Sol-gel dip coating method. MATERIALS AND METHODS: The experiment was carried out with 4 different concentrations (1:2, 1:4, 1:6, and 1:8) and three different dipping durations (24 hours, 48 hours, and 72 hours) over ten main test groups of SS and TMA archwires with uncoated wires acting as control in both dry and wet conditions. Phase analysis and surface characterization of TiO2 was analyzed by X-ray Diffractometry, surface evaluation with the help of scanning electron microscopy (SEM), and frictional characteristics were evaluated. RESULTS: Among all the concentrations 1:6 ratio with 48 hours of dipping duration showed better surface characteristics. A statistically significant difference in frictional coefficient was observed in both SS and TMA wires than their respective controls (p = 0.001). Intragroup comparison among SS and TMA groups showed that groups with 1:6 ratio and 48 hours dipping duration had least frictional coefficient in both dry and wet conditions (p = 0.001). Intergroup comparison between SS and TMA showed that SS group had significantly reduced friction than TMA (p = 0.001) except in few groups. CONCLUSION: TiO2 nanoparticle with a concentration ratio of 1:6 and 48 hours dipping duration is recommended for surface modification of orthodontic archwires.

5.
J Phys Condens Matter ; 35(33)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37168000

RESUMO

Electronic and optical studies on Dy2Ti2-MnxO7(x= 0.00, 0.05, 0.10, 0.15, & 0.20) have been presented through both, theoretical (density functional theory (DFT) calculations) and experimental (ultraviolet-visible absorption and photoluminescence emission spectroscopy) approaches. DFT calculations were employed considering the local density approximation (LDA) and LDA-1/2 for exchange-correlation interactions. Computed crystallographic parameters and energy band-gap using theoretical formulations are in good agreement with experimental results. The band-gap value obtained through the LDA-1/2 approach indicates insulated ground state of Dy2Ti2-xMnxO7(x= 0.00, 0.05, 0.10, 0.15, 0.20) system. Experimentally obtained band gap value reduces from 3.82 eV to 2.45 eV with increase in positive chemical pressure asxincreases from 0 to 0.20. Reduction in band gap value is attributed to the fact that there exists a lack of hybridization between the O-2p orbital and Ti-3d orbital, which is well correlated with the crystallographic data. Jahn-Teller effect is likely to be responsible for the presence of a mixed state of Mn (explained using x-ray photoelectron spectroscopy results), resulting in the intermediate Mn state between the valence band and the conduction band with immediate inclusion of Mn at Ti site in Dy2Ti2-xMnxO7system.

6.
Chem Commun (Camb) ; 59(28): 4225-4228, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940094

RESUMO

Closed-loop recyclable and biodegradable aliphatic covalent adaptable networks (CANs) based on dynamic ß-CO thioester linkages that exhibit a service temperature beyond 100 °C are reported. These CANs possessing tensile strength and modulus values of up to 0.3 and 3 MPa, respectively, effectively undergo stress relaxation above 100 °C. The samples exhibit creep resistance ability and low hysteresis loss, and are repeatedly reprocessable at 120 °C. These CANs are depolymerizable to monomers under mild conditions and lose notable mechanical strength (92.4%) and weight (76.5%) within ∼35 days under natural biodegradation conditions.

7.
Chem Asian J ; 18(4): e202201082, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36637865

RESUMO

Covalent adaptable networks (CANs) capable of both shape-shifting and self-healing ability offer a viable alternative to 4D printing technology to gain access to various complex shapes in a simplified manner. However, most of the reported CANs exhibit shape-shifting ability in the presence of temperature, light or chemical stimuli, which restricts their further utilization as realization of such a controlled environment is not feasible under complex scenarios. Herewith, we report a set of CANs based on a room-temperature exchangeable thia-Michael adduct, which undergoes rearrangement in network topology on application of external stress. These CANs with tensile strength (≤6 MPa) and modulus (≤71.4 MPa) adopt to any programmed shape under application of nominal stress. The CANs also exhibit stress-induced recyclability, self-welding and self-healing ability under ambient conditions. The transparency and ambient condition self-healing ability render these CANs to be utilized as scratch-resistant coatings on display items.

8.
Sci Rep ; 12(1): 5824, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388033

RESUMO

A series of Eu3+ ions doped Ca0.05Y1.93-xO3:0.02Ho3+ (CYO:Ho3+,xEu3+) nanophosphors having multicolour tuneability have been synthesised by following a simplistic solution combustion approach. The synthesised samples have been characterised by employing X-ray diffraction (XRD), Transmission electron microscope (TEM), and Fourier transforms infrared spectroscopy (FTIR). The optical properties have been engrossed by UV-visible and photoluminescent excitation and emission spectra, and decay lifetimes measurements. The characteristic emission, which occurs due to the f-f transition of Ho3+ and Eu3+ has been observed in emission spectra with excitation of 448 nm. By adjusting the doping ratio of Ho3+/Eu3+, the as-synthesized nanophosphor accomplishes multicolour tunability from green-yellow to red. Emission spectra and decay lifetime curve recommend dipole-dipole interaction causes energy transfer from Ho3+ → Eu3+. The energy transfer process from Ho3+ to Eu3+ has been confirmed through electric dipole-dipole interaction with critical distance 15.146 Å. Moreover, temperature dependent emission spectra show the high thermal stability with an activation energy ⁓ 0.21 eV, with the quantum efficiency of 83.6%. CIE coordinate illustrates that the singly doped Ho3+ and Eu3+ lie in the green and red region, respectively, while the as-synthesized CYO:Ho3+,xEu3+shows tunability from green to red with low CCT and high colour purity values. Hence, the CYO:Ho3+,xEu3+nanophosphor may be a near-UV excited multicolour colour-tunable pertinent candidate with potential prospects for multicolour- display and near-ultraviolet lighting applications.

9.
ACS Appl Mater Interfaces ; 14(7): 9618-9631, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35148046

RESUMO

The development of healable and recyclable organogels possessing responsive abilities is mainly hindered by the unavailability of many dynamic covalent linkages that undergo exchange reaction below the boiling temperature of organic swelling medium. Furthermore, the exchange is desired to be effective under catalyst-free conditions to circumvent the issue of catalyst leaching during the swelling process. Especially, imparting swift reversibility to thermostable carboxylate linkages is challenging. In this approach, we have utilized the ß-keto anchimeric assistance as the tool to induce swift reversibility into the conventional carboxylate linkage under mild temperature (∼70-90 °C) and catalyst-free conditions. Using this ß-keto carboxylate linkage as an associative bond exchange mean, strong (tensile strength = 0.3 MPa) and stretchable (ultimate elongation ≈ 600%) covalent adaptable organogels (CAOs) with anisotropic swelling, remoldable, self-healing, and shape memory ability are derived from commercially available precursors. The shape memory ability of these samples shows dependency on the shape fixing time and can be programmed, targeting further applications. Soft actuators may be fabricated from the CAOs using temperature and solvent as the activating tools. This research demonstrates that the conventional carboxylate linkages can be made labile under mild conditions for further applications.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 1): 120552, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34749109

RESUMO

This work presents the synthesis, characterization, crystal structure and spectroscopic investigations of isophthalohydrazide based probe. Among various tested metal ions, the probe selectively detects Al3+ and Cu2+ in aqueous ethanol via fluorometric and colorimetric methods, respectively. It displays a fluorescence "turn-on" response with Al3+ and visual colour change from colourless to yellow with Cu2+. Sensing mechanism is explored with UV-Vis, fluorescence spectroscopy and 1H NMR titration, and confirmed with computational results. Suppression of CN isomerization and photo-induced electron transfer (PET) along with chelation enhanced fluorescence emission (CHEF) result in "turn-on" fluorescence with Al3+ while ligand to metal charge transfer (LMCT) accounts for visual colour change with Cu2+. Job's plot and HRMS confirm 1:2 (L:M) stoichiometry. The probe also exhibits efficient reversibility and reproducibility with EDTA which are successfully mimicked with combinatorial logic gate and truth table. Additionally, solid state applications and bio-imaging investigation on gut tissue of Drosophila 3rd instar larvae are performed.


Assuntos
Colorimetria , Corantes Fluorescentes , Lógica , Reprodutibilidade dos Testes , Espectrometria de Fluorescência
11.
J Ayurveda Integr Med ; 12(4): 590-600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34772584

RESUMO

BACKGROUND: Kajjali is used as a base for Ayurvedic herbo-mineral medicines. It is a combination of mercury with sulfur in varying proportions. The ratio of sulfur (S) added to mercury (Hg) directly relates to the therapeutic efficacy of the compound. OBJECTIVE: To analyze the physico-chemical characteristics of samaguna gandhaka kajjali (Hg: S = 1:1) and shadaguna gandhaka kajjali (Hg: S = 1:6). MATERIALS AND METHODS: X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Fourier transmission infrared spectroscopy, thermo-gravimetry analysis, and atomic absorption spectroscopy were applied to characterize each type of kajjali. RESULTS: It was found that the particle size of the formed kajjali compound increases with a decrease in the mercury to sulfur ratio. The presence of excess sulfur does not change the surface oxidation states as revealed by the XPS analysis. No trace of mercury has been found in both samaguna gandhaka kajjali (SGK-1) and shadguna gandhaka kajjali (SGK-6), indicating a complete Hg reaction with S. CONCLUSION: Kajjali simulates nanomaterial of the modern era and possesses therapeutic efficacy as mentioned in classical Ayurveda texts. Complete trituration of mercury and sulfur combination ends up with this kajjali formation incorporating the potency of nanotherapeutics.

12.
J Phys Condens Matter ; 32(46): 465804, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32759482

RESUMO

Structural analysis of spin frustrated Ho2Ge x Ti2-x O7 (x = 0, 0.1, 0.15 & 0.25) pyrochlore oxides has been performed using high resolution x-ray diffraction pattern and low temperature synchrotron x-ray diffraction pattern. The effect of positive chemical pressure on the spin dynamics of Ho2Ge x Ti2-x O7 has been analysed through the study of static (M-T and M-H; magnetisation against temperature & magnetisation against magnetic field) and dynamical (ac susceptibility) magnetic measurements. In lower temperature regime (∼2 K), such systems are predominantly governed by competing exchange (J nn) and dipolar (D nn) magnetic interactions. Magnetic measurements indicate that the application of increased chemical pressure in Ho2Ti2O7 matrix propels the system towards diminished ferromagnetic interaction. Dipolar coupling constant remains almost unchanged but Curie-Weiss temperature (θ cw) reduces to -0.04 K from 0.33 K (for an applied magnetic field; H = 100 Oe) with increasing x in Ho2Ge x Ti2-x O7. Positive chemical pressure establishes the dominance of Ho-Ho antiferromagnetic interaction J nn over dipolar interaction D nn. Spin relaxation feature corresponding to thermally activated single ion freezing (T s∼15 K) is shifted towards lower temperature. This chemical pressure-driven T s shift is ascribed to the alteration in crystal field effect, which reduces the activation energy for singe ion spin freezing. The reduction in the activation energy indicates crystal field-phonon coupling in Ho2Ge x Ti2-x O7 system. The robustness in spin ice freezing (second spin relaxation feature in ac susceptibility curve) remains unaffected with increasingly chemical pressure. This spin freezing ('2 in-2 out' spin arrangement in tetrahedra) is related to quantum tunnelling phenomenon, at T ice ∼ 2 K. It indicates that majority of spins still follows the 'ice rule' in Ho2Ge x Ti2-x O7 even after the application of chemical pressure.

13.
J Phys Condens Matter ; 32(11): 115501, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31751970

RESUMO

Chemical pressure plays a crucial role in determining the electronic properties of the quantum materials. Investigation of electronic structure of Ho2Ge x Ti2-x O7 (x = 2, 1.9, 1.75, 1.5 1, 0.5, 0.25, 0.1 and 0) series has been performed. Pyrochlore and Pyrogermanate, Re2B2O7 (Re = Ho3+, B = Ti4+ and Ge4+; rare earth titanates and germanates), substituted with increasing amount of Ge4+ at the Ti4+ site and vice versa develops structural distortions. Distinct shrinkage effect has been established in the Ho2Ti2O7 matrix upon Ge+4 substitutions at B site, resulting in the modification of band gap value. Band gap of 5.24 eV drastically drops to 3.92 eV with immediate Ti4+ substitution in Ho2Ge2O7. Electronic states of Ho3+ (4f forbidden transitions) had also been identified. We observe favored sub level transition (Specific Stark component) corresponding to5F5 to 5I8 electronic transition for Ho3+ at λ exc. = 450 nm. The upper valence band consisted of O 2p state hybridized with Ho 5p and Ti and Ge 4p states and conduction band primarily formed by Ho 5d state hybridized with Ti 3d and Ge 4d states as obtained from density of states (DOS) calculations. Strong hybridization between Ho 5p1/2 and Ti 3p orbital upon Ti4+ inclusion in Ho2Ge2O7 has been observed through both theoretical studies using LDA-1/2 and UV-Vis, photoluminescence, ultraviolet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy. The evolution of total DOS of all studied composition shows that valence band edge is more sensitive than conduction band to composition. These results provide chemical pressure as an excellent tool to tailor the band gap and fine tune the intermediate electronic states in Ho2Ge x Ti2-x O7.

14.
Nanoscale ; 10(47): 22583-22592, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30480700

RESUMO

A detailed investigation of magnetization relaxation for silver-coated magnetite nanostructures with three different types of magnetic behavior in a single particle is presented. Magnetite nanoparticles of diameter ∼6.5 nm synthesized via single-phase emulsion were further coated with a silver shell of thickness ∼2 nm. The synthesized nanoparticles are found to be efficiently photoluminescent. The coating of silver generates a magnetically disordered spin layer at the interface of the magnetic core and the non-magnetic shell. This intermediate layer plays a significant role in the dynamical magnetic response of nanoparticles under an external magnetic field. We present detailed magnetic measurements such as field- and temperature-dependent dc magnetization with zero-field-cooled and field-cooled protocols, ac susceptibility and time decay of magnetization relaxation along with their analysis using various formalisms viz. Néel-Arrhenius, Vogel-Fulcher and power law models. The relaxation analysis suggests the consolidated presence of two characteristic relaxation times corresponding to the superparamagnetic and spin-glass behavior of silver-coated magnetite nanoparticles.

15.
Nanoscale ; 7(14): 6083-92, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25767916

RESUMO

The coupling of organic molecule excitons with metal nano-structure surface plasmons can improve the performance of optoelectronic devices. This paper presents the effect of localized silver metal surface plasmons on spectral as well as charge transport properties of ordered molecular Langmuir Schaefer (LS) films of a fluorescent conducting multifunctional organic polymer: poly (3,3'''-dialkylquarterthiophene) [PQT-12]. The stability and thickness of the PQT-12 LS film were studied by the pressure vs. area isotherm curve. Atomic force microscopy images indicate the formation of a smooth ordered polymer thin LS film of PQT-12 over silver nanostructure island films [SNIF] (∼40 to 50 nm in size). Raman, electronic absorption and fluorescence spectral measurements of the PQT-12 LS film, near SNIF i.e. the near field, show a plasmon coupled enhancement of ∼13 fold in the intensity of Raman bands along with a two-fold enhancement in the absorption band (531 nm) and a six-fold enhancement in the fluorescence band (665 nm) coupled with a decrease in fluorescence decay time with improved photostability as compared to an identical control sample containing no SNIF i.e. the far field condition. These results indicate the formation of a plasmon coupled unified fluorophore system due to adsorption of the PQT-12 LS film over SNIF. The effect of plasmonic coupling is also studied by applying an electric field in sandwiched structures of Al/PQT-12 LS/SNIF/ITO with respect to Al/PQT-12 LS/ITO. Nearly three orders of magnitude enhancement in the current density (J-V plot) of the PQT-12 LS film is observed in the presence of SNIF, which further increases, on illuminating the film by green laser light [532 nm], while the fluorescence intensity and decay time decrease. X-ray photoelectron spectroscopic measurements of SNIF also show a red shift in 3d3/2 and 3d5/2 transitions of silver in the PQT-12 coated LS film, which indicates partial charge transfer from the PQT-12 polymer backbone to SNIF and causes an enhancement in conductivity. This again supports the formation of a field controlled radiating plasmon coupled fluorophore unified system. These findings show greater potential in developing a voltage controlled high photon flux electroluminescent material for multifarious applications.

16.
Appl Biochem Biotechnol ; 176(2): 480-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809996

RESUMO

We report a surfactant-free synthesis of monodispersed gold nanoparticles (AuNPs) with average size of 15 nm. An approach for visual and fluorescent sensing of urea in aqueous solution based on shift in surface plasmon band (SPB) maxima as well as quench in fluorescence intensity. To enable the urea detection, we functionalized the thiol-capped gold nanoparticles with urease, the enzyme specific to urea using carbodiimide chemistry. The visible color changed of the gold colloidal solution from red to blue (or purple); this was evident from quenching in absorbance and fluorescence intensity, is the principle applied here for the sensing of urea. The solution turns blue when the urea concentration exceeds 8 mg/dL which reveals visual lower detection limit. The lower detection limits governed by the fluorescence quenching were found 5 mg/dL (R(2) = 0.99) which is highly sensitive and selective compared to shift in SPB maxima. The approach depicted here seems to be important in clinical diagnosis.


Assuntos
Fluorescência , Ouro/química , Nanopartículas Metálicas/química , Ureia/análise , Urease/química , Enzimas Imobilizadas/química
17.
Environ Sci Technol ; 40(15): 4696-702, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16913126

RESUMO

Bacterial activity is commonly thought to be directly responsible for denitrification in soils and groundwater. However, nitrate reduction in low organic sediments occurs abiotically by FeII ions within the fougerite mineral (IMA 2003-057), giving the bluish-green color of gleysols. Fougerite, the mineral counterpart of FeII-III oxyhydroxycarbonate, FeII6(1-x)FeIII6xO12H2(7-3x)CO3, provides a unique in situ redox flexibility, which can adapt x = {[FeIII]/[Fetotal]} between 1/3 and 2/3 as shown using Mössbauer spectroscopy. Chemical potential and Eh-pH diagrams for this system were determined from electrode potential monitored during deprotonation of hydroxycarbonate FeII4FeIII2(OH)12CO3 to assess the possibility of reducing pollutants in the field. Bioreduction of ferric oxyhydroxides in anoxic groundwater yields dissolved FeII, whereas HCO3- anions produced from organic matter are incorporated into fougerite layered double oxyhydroxide structure. Thus, fougerite is the solid-state redox mediator acting as electron shuttle that helps bacterial activity for reducing nitrate by coupling dissimilatory FeIII reduction and oxidation of FeII with reduction of NO3-. It is proposed that this system could be used in the remediation of soils and nitrified waters.


Assuntos
Bicarbonatos/química , Compostos Férricos/química , Compostos Ferrosos/química , Compostos de Ferro/química , Oxirredução , Óxidos/química , Biotransformação , Ferro , Minerais , Modelos Químicos , Nitratos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...