Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(16): 12698-12708, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38602285

RESUMO

The reaction dynamics of H2COO to form HCOOH and dioxirane as first steps for OH-elimination is quantitatively investigated. Using a machine learned potential energy surface (PES) at the CASPT2/aug-cc-pVTZ level of theory vibrational excitation along the CH-normal mode νCH with energies up to 40.0 kcal mol-1 (∼5νCH) leads almost exclusively to HCOOH which further decomposes into OH + HCO. Although the barrier to form dioxirane is only 21.4 kcal mol-1 the reaction probability to form dioxirane is two orders of magnitude lower if the CH-stretch mode is excited. Following the dioxirane-formation pathway is facile, however, if the COO-bend vibration is excited together with energies equivalent to ∼2νCH or ∼3νCOO. For OH-formation in the atmosphere the pathway through HCOOH is probably most relevant because the alternative pathways (through dioxirane or formic acid) involve several intermediates that can de-excite through collisions, relax via internal vibrational relaxation (IVR), or pass through loose and vulnerable transition states (formic acid). This work demonstrates how, by selectively exciting particular vibrational modes, it is possible to dial into desired reaction channels with a high degree of specificity.

2.
Sci Rep ; 14(1): 5006, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438404

RESUMO

A combination of improved body armor, medical transportation, and treatment has led to the increased survival of warfighters from combat extremity injuries predominantly caused by blasts in modern conflicts. Despite advances, a high rate of complications such as wound infections, wound failure, amputations, and a decreased quality of life exist. To study the molecular underpinnings of wound failure, wound tissue biopsies from combat extremity injuries had RNA extracted and sequenced. Wounds were classified by colonization (colonized vs. non-colonized) and outcome (healed vs. failed) status. Differences in gene expression were investigated between timepoints at a gene level, and longitudinally by multi-gene networks, inferred proportions of immune cells, and expression of healing-related functions. Differences between wound outcomes in colonized wounds were more apparent than in non-colonized wounds. Colonized/healed wounds appeared able to mount an adaptive immune response to infection and progress beyond the inflammatory stage of healing, while colonized/failed wounds did not. Although, both colonized and non-colonized failed wounds showed increasing inferred immune and inflammatory programs, non-colonized/failed wounds progressed beyond the inflammatory stage, suggesting different mechanisms of failure dependent on colonization status. Overall, these data reveal gene expression profile differences in healing wounds that may be utilized to improve clinical treatment paradigms.


Assuntos
Qualidade de Vida , Ferida Cirúrgica , Humanos , Amputação Cirúrgica , Redes Reguladoras de Genes , Extremidades
3.
J Phys Chem Lett ; 15(1): 90-96, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38147042

RESUMO

The decomposition dynamics of vibrationally excited syn-CH3CHOO to form vinoxy + hydroxyl (CH2CHO + OH) radicals or to recombine to form glycolaldehyde (CH2OHCHO) are characterized using statistically significant numbers of molecular dynamics simulations using a full-dimensional neural-network-based potential energy surface at the CASPT2 level of theory. The computed final OH-translational and rotational state distributions agree well with experiments and probe the still unknown O-O bond strength DeOO for which best values from 22 to 25 kcal/mol are found. OH-elimination rates are consistent with experiments and do not vary appreciably with DeOO due to the non-equilibrium nature of the process. In addition to the OH-elimination pathway, OH roaming is observed following O-O scission, which leads to glycolaldehyde formation on the picosecond time scale. Together with recent work involving the methyl-ethyl-substituted Criegee intermediate, we conclude that OH roaming is a general pathway to be included in molecular-level modeling of atmospheric processes. This work demonstrates that atomistic simulations with machine-learned energy functions provide a viable route for exploring the chemistry and reaction dynamics of atmospheric reactions.

4.
Microbiol Spectr ; 11(6): e0252023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874143

RESUMO

IMPORTANCE: Microbial contamination in combat wounds can lead to opportunistic infections and adverse outcomes. However, current microbiological detection has a limited ability to capture microbial functional genes. This work describes the application of targeted metagenomic sequencing to profile wound bioburden and capture relevant wound-associated signatures for clinical utility. Ultimately, the ability to detect such signatures will help guide clinical decisions regarding wound care and management and aid in the prediction of wound outcomes.


Assuntos
Metagenoma , Lesões Relacionadas à Guerra , Infecção dos Ferimentos , Humanos , Infecção dos Ferimentos/diagnóstico , Infecção dos Ferimentos/microbiologia , Lesões Relacionadas à Guerra/diagnóstico , Lesões Relacionadas à Guerra/microbiologia
5.
Science ; 380(6640): 77-81, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023184

RESUMO

Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.

6.
Phys Chem Chem Phys ; 24(38): 23309-23322, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36165004

RESUMO

The dynamics of the C(3P) + O2(3Σ-g) → CO(1Σ+) + O(1D) reaction on its electronic ground state is investigated by using time-dependent wave packet propagation (TDWP) and quasi-classical trajectory (QCT) simulations. For the moderate collision energies considered (Ec = 0.001 to 0.4 eV, corresponding to a range from 10 K to 4600 K) the total reaction probabilities from the two different treatments of the nuclear dynamics agree very favourably. The undulations present in P(E) from the quantum mechanical treatment can be related to stabilization of the intermediate CO2 complex with lifetimes on the 0.05 ps time scale. This is also confirmed from direct analysis of the TDWP simulations and QCT trajectories. Product diatom vibrational and rotational level resolved state-to-state reaction probabilities from TDWP and QCT simulations agree well except for the highest product vibrational states (v' ≥ 15) and for the lowest product rotational states (j' ≤ 10). Opening of the product vibrational level CO(v' = 17) requires ∼0.2 eV from QCT and TDWP simulations with O2(j = 0) and decreases to 0.04 eV if all initial rotational states are included in the QCT analysis, compared with Ec > 0.04 eV obtained from experiments. It is thus concluded that QCT simulations are suitable for investigating and realistically describe the C(3P) + O2(3Σ-g) → CO(1Σ+) + O(1D) reaction down to low collision energies when compared with results from a quantum mechanical treatment using TDWPs.

7.
Sci Rep ; 12(1): 13816, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970993

RESUMO

Battlefield injury management requires specialized care, and wound infection is a frequent complication. Challenges related to characterizing relevant pathogens further complicates treatment. Applying metagenomics to wounds offers a comprehensive path toward assessing microbial genomic fingerprints and could indicate prognostic variables for future decision support tools. Wound specimens from combat-injured U.S. service members, obtained during surgical debridements before delayed wound closure, were subjected to whole metagenome analysis and targeted enrichment of antimicrobial resistance genes. Results did not indicate a singular, common microbial metagenomic profile for wound failure, instead reflecting a complex microenvironment with varying bioburden diversity across outcomes. Genus-level Pseudomonas detection was associated with wound failure at all surgeries. A logistic regression model was fit to the presence and absence of antimicrobial resistance classes to assess associations with nosocomial pathogens. A. baumannii detection was associated with detection of genomic signatures for resistance to trimethoprim, aminoglycosides, bacitracin, and polymyxin. Machine learning classifiers were applied to identify wound and microbial variables associated with outcome. Feature importance rankings averaged across models indicated the variables with the largest effects on predicting wound outcome, including an increase in P. putida sequence reads. These results describe the microbial genomic determinants in combat wound bioburden and demonstrate metagenomic investigation as a comprehensive tool for providing information toward aiding treatment of combat-related injuries.


Assuntos
Anti-Infecciosos , Doenças Musculoesqueléticas , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Extremidades/lesões , Humanos , Metagenoma , Metagenômica , Doenças Musculoesqueléticas/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico
8.
Phys Chem Chem Phys ; 24(21): 12767-12786, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593769

RESUMO

All-atom simulations can provide molecular-level insights into the dynamics of gas-phase, condensed-phase and surface processes. One important requirement is a sufficiently realistic and detailed description of the underlying intermolecular interactions. The present perspective provides an overview of the present status of quantitative atomistic simulations from colleagues' and our own efforts for gas- and solution-phase processes and for the dynamics on surfaces. Particular attention is paid to direct comparison with experiment. An outlook discusses present challenges and future extensions to bring such dynamics simulations even closer to reality.


Assuntos
Simulação de Dinâmica Molecular
9.
J Phys Chem Lett ; 12(29): 6781-6787, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34270244

RESUMO

Understanding the formation of molecules under conditions relevant to interstellar chemistry is fundamental to characterize the chemical evolution of the universe. Using reactive molecular dynamics simulations with model-based or high-quality potential energy surfaces provides a means to specifically and quantitatively probe individual reaction channels at a molecular level. The formation of CO2 from collision of CO(1Σ) and O(1D) is characterized on amorphous solid water (ASW) under conditions typical in cold molecular clouds. Recombination takes place on the subnanosecond time scale and internal energy redistribution leads to stabilization of the product with CO2 remaining adsorbed on the ASW on extended time scales. Using a high-level, reproducing kernel-based potential energy surface for CO2, formation into and stabilization of CO2 and COO are observed.

10.
J Chem Theory Comput ; 17(6): 3687-3699, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960787

RESUMO

The calculation of the anharmonic modes of small- to medium-sized molecules for assigning experimentally measured frequencies to the corresponding type of molecular motions is computationally challenging at sufficiently high levels of quantum chemical theory. Here, a practical and affordable way to calculate coupled-cluster quality anharmonic frequencies using second-order vibrational perturbation theory (VPT2) from machine-learned models is presented. The approach, referenced as "NN + VPT2", uses a high-dimensional neural network (PhysNet) to learn potential energy surfaces (PESs) at different levels of theory from which harmonic and VPT2 frequencies can be efficiently determined. The NN + VPT2 approach is applied to eight small- to medium-sized molecules (H2CO, trans-HONO, HCOOH, CH3OH, CH3CHO, CH3NO2, CH3COOH, and CH3CONH2) and frequencies are reported from NN-learned models at the MP2/aug-cc-pVTZ, CCSD(T)/aug-cc-pVTZ, and CCSD(T)-F12/aug-cc-pVTZ-F12 levels of theory. For the largest molecules and at the highest levels of theory, transfer learning (TL) is used to determine the necessary full-dimensional, near-equilibrium PESs. Overall, NN + VPT2 yields anharmonic frequencies to within 20 cm-1 of experimentally determined frequencies for close to 90% of the modes for the highest quality PES available and to within 10 cm-1 for more than 60% of the modes. For the MP2 PESs only ∼60% of the NN + VPT2 frequencies were within 20 cm-1 of the experiment, with outliers up to ∼150 cm-1, compared to the experiment. It is also demonstrated that the approach allows to provide correct assignments for strongly interacting modes such as the OH bending and the OH torsional modes in formic acid monomer and the CO-stretch and OH-bend mode in acetic acid.

11.
Front Chem ; 9: 827085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211461

RESUMO

The formation of molecules in and on amorphous solid water (ASW) as it occurs in interstellar space releases appreciable amounts of energy that need to be dissipated to the environment. Here, energy transfer between CO2 formed within and on the surface of amorphous solid water (ASW) and the surrounding water is studied. Following CO(1Σ+) + O(1D) recombination the average translational and internal energy of the water molecules increases on the ∼ 10 ps time scale by 15-25% depending on whether the reaction takes place on the surface or in an internal cavity of ASW. Due to tight coupling between CO2 and the surrounding water molecules the internal energy exhibits a peak at early times which is present for recombination on the surface but absent for the process inside ASW. Energy transfer to the water molecules is characterized by a rapid ∼ 10 ps and a considerably slower ∼ 1 ns component. Within 50 ps a mostly uniform temperature increase of the ASW across the entire surface is found. The results suggest that energy transfer between a molecule formed on and within ASW is efficient and helps to stabilize the reaction products generated.

12.
Phys Chem Chem Phys ; 22(16): 8913-8923, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32292975

RESUMO

The kinetics of MgO+ + CH4 was studied experimentally using the variable ion source, temperature adjustable selected ion flow tube (VISTA-SIFT) apparatus from 300-600 K and computationally by running and analyzing reactive atomistic simulations. Rate coefficients and product branching fractions were determined as a function of temperature. The reaction proceeded with a rate of k = 5.9 ± 1.5 × 10-10(T/300 K)-0.5±0.2 cm3 s-1. MgOH+ was the dominant product at all temperatures, but Mg+, the co-product of oxygen-atom transfer to form methanol, was observed with a product branching fraction of 0.08 ± 0.03(T/300 K)-0.8±0.7. Reactive molecular dynamics simulations using a reactive force field, as well as a neural network trained on thousands of structures yield rate coefficients about one order of magnitude lower. This underestimation of the rates is traced back to the multireference character of the transition state [MgOCH4]+. Statistical modeling of the temperature-dependent kinetics provides further insight into the reactive potential surface. The rate limiting step was found to be consistent with a four-centered activation of the C-H bond, in agreement with previous calculations. The product branching was modeled as a competition between dissociation of an insertion intermediate directly after the rate-limiting transition state, and traversing a transition state corresponding to a methyl migration leading to a Mg-CH3OH+ complex, though only if this transition state is stabilized significantly relative to the dissociated MgOH+ + CH3 product channel. An alternative, non-statistical mechanism is discussed, whereby a post-transition state bifurcation in the potential surface could allow the reaction to proceed directly from the four-centered TS to the Mg-CH3OH+ complex thereby allowing a more robust competition between the product channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...