Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 985, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138259

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of the major regulators of low-density lipoprotein receptor (LDLR). Information on role and regulation of PCSK9 in lung is very limited. Our study focuses on understanding the role and regulation of PCSK9 in the lung. PCSK9 levels are higher in Bronchoalveolar lavage fluid (BALF) of smokers with or without chronic obstructive pulmonary diseases (COPD) compared to BALF of nonsmokers. PCSK9-stimulated cells induce proinflammatory cytokines and activation of MAPKp38. PCSK9 transcripts are highly expressed in healthy individuals compared to COPD, pulmonary fibrosis or pulmonary systemic sclerosis. Cigarette smoke extract reduce PCSK9 levels in undifferentiated pulmonary bronchial epithelial cells (PBEC) but induce in differentiated PBEC. PCSK9 inhibition affect biological pathways, induces lipid peroxidation, and higher level of apoptosis in response to staurosporine. Our results suggest that higher levels of PCSK9 in BALF acts as an inflammatory marker. Furthermore, extracellular and intracellular PCSK9 play different roles.


Assuntos
Inflamação , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Morte Celular , Metabolismo dos Lipídeos , Masculino , Apoptose , Células Epiteliais/metabolismo , Feminino
2.
Indian J Crit Care Med ; 28(6): 552-560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39130380

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. However, there is a lack of comprehensive data from low- and middle-income countries (LMICs) regarding factors influencing COPD outcomes, particularly in regions where biomass exposure is prevalent. Objective: The Factors Affecting Survival in Severe and Very Severe COPD Patients Admitted to Tertiary Centers of India (FAST) study aims to address this gap by evaluating factors impacting survival and exacerbation rates among COPD patients in LMICs like India, with a specific focus on biomass exposure, clinical phenotypes, and nutritional status in patients admitted to the Intensive Care Unit (ICU). Methods: The FAST study is an observational cohort study conducted in university teaching hospitals across India. The study aims to enroll 1000 COPD patients admitted to the ICU meeting specific inclusion criteria, with follow-up assessments conducted every 6 months over a 2-year period. Data collection includes demographic information, clinical manifestations, laboratory investigations, pulmonary function tests, medications, nutritional status, mental health, and health-related quality of life. Adjudication of exacerbations and mortality will also be undertaken. The FAST study seeks to provide crucial insights into COPD outcomes in LMICs, informing more precise management strategies and mitigating the burden of COPD in these settings. By evaluating factors such as biomass exposure, clinical phenotypes, and nutritional status, the study aims to address key knowledge gaps in COPD research. How to cite this article: Arunachala S, Devapal S, Swamy DSN, Greeshma MV, Ul Hussain I, Siddaiah JB, et al. Factors Affecting Survival in Severe and Very Severe COPD after Admission in ICUs of Tertiary Care Centers of India (FAST COPD): Study Protocol for a Multicentric Cohort Study. Indian J Crit Care Med 2024;28(6):552-560.

3.
Respir Res ; 25(1): 49, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245732

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS: The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS: 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION: Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.


Assuntos
Bronquite Crônica , Ciliopatias , Doença Pulmonar Obstrutiva Crônica , Humanos , Bronquite Crônica/induzido quimicamente , Bronquite Crônica/metabolismo , Fumaça/efeitos adversos , Madeira/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa , Produtos do Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA