Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Neurol Genet ; 10(2): e200142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38586598

RESUMO

Objectives: Mosaic gain of chromosome 1q (chr1q) has been associated with malformation of cortical development (MCD) and epilepsy. Hyaline protoplasmic astrocytopathy (HPA) is a rare neuropathologic finding seen in cases of epilepsy with MCD. The cell-type specificity of mosaic chr1q gain in the brain and the molecular signatures of HPA are unknown. Methods: We present the case of a child with pharmacoresistant epilepsy who underwent epileptic focus resections at age 3 and 5 years and was found to have mosaic chr1q gain and HPA. We performed single-nuclei RNA sequencing (snRNA-seq) of brain tissue from the second resection. Results: snRNA-seq showed increased expression of chr1q genes specifically in subsets of neurons and astrocytes. Differentially expressed genes associated with inferred chr1q gain included AKT3 and genes associated with cell adhesion or migration. A subpopulation of astrocytes demonstrated marked enrichment for synapse-associated transcripts, possibly linked to the astrocytic inclusions observed in HPA. Discussion: snRNA-seq may be used to infer the cell-type specificity of mosaic chromosomal copy number changes and identify associated gene expression alterations, which in the case of chr1q gain may involve aberrations in cell migration. Future studies using spatial profiling could yield further insights on the molecular signatures of HPA.

2.
Methods ; 225: 52-61, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492901

RESUMO

Isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are two commonly used methods to probe biomolecular interactions. ITC can provide information about the binding affinity, stoichiometry, changes in Gibbs free energy, enthalpy, entropy, and heat capacity upon binding. SPR can provide information about the association and dissociation kinetics, binding affinity, and stoichiometry. Both methods can determine the nature of protein-protein interactions and help understand the physicochemical principles underlying complex biochemical pathways and communication networks. This methods article discusses the practical knowledge of how to set up and troubleshoot these two experiments with some examples.


Assuntos
Calorimetria , Ligação Proteica , Ressonância de Plasmônio de Superfície , Termodinâmica , Ressonância de Plasmônio de Superfície/métodos , Calorimetria/métodos , Cinética , Proteínas/química , Proteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Entropia
3.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328093

RESUMO

Introduction: Mosaic gain of chromosome 1q (chr1q) has been associated with malformation of cortical development (MCD) and epilepsy. Hyaline protoplasmic astrocytopathy (HPA) is a rare neuropathological finding seen in cases of epilepsy with MCD. The cell-type specificity of mosaic chr1q gain in the brain and the molecular signatures of HPA are unknown. Methods: We present a child with pharmacoresistant epilepsy who underwent epileptic focus resections at age 3 and 5 years and was found to have mosaic chr1q gain and HPA. We performed single-nuclei RNA-sequencing (snRNA-seq) of brain tissue from the second resection. Results: snRNA-seq showed increased expression of chr1q genes specifically in subsets of neurons and astrocytes. Differentially expressed genes associated with inferred chr1q gain included AKT3 and genes associated with cell adhesion or migration. A subpopulation of astrocytes demonstrated marked enrichment for synapse-associated transcripts, possibly linked to the astrocytic inclusions observed in HPA. Discussion: snRNA-seq may be used to infer the cell type-specificity of mosaic chromosomal copy number changes and identify associated gene expression alterations, which in the case of chr1q gain may involve aberrations in cell migration. Future studies using spatial profiling could yield further insights on the molecular signatures of HPA.

4.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961209

RESUMO

Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (ß-hydroxybutyrate, ßHB) rescued EAE whereas transgenic mice unable to produce ßHB in the intestine developed more severe disease. Transplantation of the ßHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 (Th17) cell activation in vitro . Finally, we isolated a L. murinus strain that protected from EAE, which was phenocopied by the Lactobacillus metabolite indole lactic acid. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.

5.
medRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961234

RESUMO

Background: Frailty is a geriatric syndrome characterized by chronic inflammation and metabolic insufficiency that creates vulnerability to poor outcomes with aging. We hypothesize that geroscience interventions, which target mechanisms of aging, could ameliorate frailty. Metabolites such as ketone bodies are candidate geroscience interventions, having pleiotropic effects on inflammo-metabolic aging mechanisms. Ketone esters (KEs) induce ketosis without dietary changes, but KEs have not been studied in an older adult population. Our long-term goal is to examine if KEs modulate geroscience mechanisms and clinical outcomes relevant to frailty in older adults. Objectives: The primary objective of this randomized, placebo-controlled, double-blinded, parallel-group, pilot trial is to determine tolerability of 12-weeks of KE ingestion in a generalizable population of older adults (≥ 65 years). Secondary outcomes include safety and acute blood ketone kinetics. Exploratory outcomes include physical function, cognitive function, quality of life, aging biomarkers and inflammatory measures. Methods: Community-dwelling adults who are independent in activities of daily living, with no unstable acute medical conditions (n=30) will be recruited. The study intervention is a KE or a taste, appearance, and calorie matched placebo beverage. Initially, acute 4-hour ketone kinetics after 12.5g or 25g of KE consumption will be assessed. After collection of baseline safety, functional, and biological measurements, subjects will randomly be allocated to consume KE 25g or placebo once daily for 12-weeks. Questionnaires will assess tolerability daily for 2-weeks, and then via phone interview at bi-monthly intervals. Safety assessments will be repeated at week 4. All measures will be repeated at week 12. Conclusion: This study will evaluate feasibility, tolerability, and safety of KE consumption in older adults and provide exploratory data across a range of geroscience-related endpoints. This data will inform design of larger trials to rigorously test KE effects on geroscience mechanisms and clinical outcomes relevant to frailty.

6.
Biophys J ; 122(23): 4489-4502, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897042

RESUMO

With hundreds of coronaviruses (CoVs) identified in bats that can infect humans, it is essential to understand how CoVs that affected the human population have evolved. Seven known CoVs have infected humans, of which three CoVs caused severe disease with high mortalities: severe acute respiratory syndrome (SARS)-CoV emerged in 2002, Middle East respiratory syndrome-CoV in 2012, and SARS-CoV-2 in 2019. SARS-CoV and SARS-CoV-2 belong to the same family, follow the same receptor pathway, and use their receptor-binding domain (RBD) of spike protein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor on the human epithelial cell surface. The sequence of the two RBDs is divergent, especially in the receptor-binding motif that directly interacts with ACE2. We probed the biophysical differences between the two RBDs in terms of their structure, stability, aggregation, and function. Since RBD is being explored as an antigen in protein subunit vaccines against CoVs, determining these biophysical properties will also aid in developing stable protein subunit vaccines. Our results show that, despite RBDs having a similar three-dimensional structure, they differ in their thermodynamic stability. RBD of SARS-CoV-2 is significantly less stable than that of SARS-CoV. Correspondingly, SARS-CoV-2 RBD shows a higher aggregation propensity. Regarding binding to ACE2, less stable SARS-CoV-2 RBD binds with a higher affinity than more stable SARS-CoV RBD. In addition, SARS-CoV-2 RBD is more homogenous in terms of its binding stoichiometry toward ACE2 compared to SARS-CoV RBD. These results indicate that SARS-CoV-2 RBD differs from SARS-CoV RBD in terms of its stability, aggregation, and function, possibly originating from the diverse receptor-binding motifs. Higher aggregation propensity and decreased stability of SARS-CoV-2 RBD warrant further optimization of protein subunit vaccines that use RBD as an antigen by inserting stabilizing mutations or formulation screening.


Assuntos
SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Sítios de Ligação , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Ligação Proteica , Domínios Proteicos
7.
Am J Clin Nutr ; 118(3): 518-529, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474105

RESUMO

BACKGROUND: Adherence to the American Cancer Society (ACS) guidelines of avoiding obesity, maintaining physical activity, and consuming a diet rich in fruits, vegetables, and whole grains is associated with longer survival in colorectal cancer (CRC) survivors. Dietary components of the ACS guidelines may act in part by changing the microbiome, which is implicated in CRC outcomes. OBJECTIVES: We conducted a pilot cross-sectional study to explore associations between ACS guidelines and the gut microbiome. METHODS: Stool samples and questionnaires were collected from 28 CRC survivors at the University of California, San Francisco from 2019 to 2020. ACS scores were calculated based on validated questionnaires. Gut microbial community structure from 16S amplicons and gene/pathway abundances from metagenomics were tested for associations with the ACS score and its components using ANOVA and general linear models. RESULTS: The overall ACS score was not significantly associated with variations in the fecal microbiota. However, fruit and vegetable intake and alcohol intake accounted for 19% (P = 0.005) and 13% (P = 0.01) of variation in the microbiota, respectively. Fruit/vegetable consumption was associated with increased microbial diversity, increased Firmicutes, decreased Bacteroidota, and changes to multiple genes and metabolic pathways, including enriched pathways for amino acid and short-chain fatty acid biosynthesis and plant-associated sugar degradation. In contrast, alcohol consumption was positively associated with overall microbial diversity, negatively associated with Bacteroidota abundance, and associated with changes to multiple genes and metabolic pathways. The other components of the ACS score were not statistically significantly associated with the fecal microbiota in our sample. CONCLUSIONS: These results guide future studies examining the impact of changes in the intake of fruits, vegetables, and alcoholic drinks on the gut microbiome of CRC survivors.


Assuntos
Sobreviventes de Câncer , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Verduras , Frutas , Estudos Transversais , Dieta/métodos , Consumo de Bebidas Alcoólicas
8.
mBio ; 14(4): e0088923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37294090

RESUMO

Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2-positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls. These results were confirmed and extended in the K18-humanized angiotensin-converting enzyme 2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the USA), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila. Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology. IMPORTANCE Taken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2, it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.


Assuntos
COVID-19 , Microbiota , Animais , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Mamíferos
9.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163026

RESUMO

Interstitial lung diseases (ILDs) are a heterogeneous group of disorders that can develop in patients with connective tissue diseases (CTD). Establishing autoimmunity in ILD impacts prognosis and treatment. ILD patients are screened for autoimmunity by assaying for anti-nuclear autoantibodies, rheumatoid factors and other non-specific tests. However, this approach has not been rigorously validated and may miss autoimmunity that manifests as autoantibodies to tissue antigens not previously defined in ILD. Here, we use Phage Immunoprecipitation-Sequencing (PhIP-Seq) to conduct a large, multi-center unbiased autoantibody discovery screen of ILD patients and controls. PhIP-Seq identified 17 novel autoreactive targets, and machine learning classifiers derived from these targets discriminated ILD serum from controls. Among these 17 candidates, we validated Cadherin Related Family Member 5 (CDHR5) as an autoantigen and found CDHR5 autoantibodies in patients with rheumatologic disorders and importantly, subjects not previously diagnosed with autoimmunity. Lung tissue of CDHR5 autoreactive patients showed transcriptional profiles consistent with activation of NFκB signaling and upregulation of chitotriosidase (CHIT1), a molecular pathway linked to fibrosis. Our study shows PhIP-Seq uncovers novel autoantibodies in ILD patients not revealed by standard clinical tests. Furthermore, CDHR5 autoantibodies may define a novel molecular endotype of ILD characterized by inflammation and fibrosis.

10.
medRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214861

RESUMO

Interstitial lung diseases (ILD) are heterogeneous conditions that may lead to progressive fibrosis and death of affected individuals. Despite diversity in clinical manifestations, enlargement of lung-associated lymph nodes (LLN) in fibrotic ILD patients predicts worse survival. Herein, we revealed a common adaptive immune landscape in LLNs of all ILD patients, characterized by highly activated germinal centers and antigen-activated T cells including regulatory T cells (Tregs). In support of these findings, we identified serum reactivity to 17 candidate auto-antigens in ILD patients through a proteome-wide screening using phage immunoprecipitation sequencing. Autoantibody responses to actin binding LIM protein 1 (ABLIM1), a protein highly expressed in aberrant basaloid cells of fibrotic lungs, were correlated with LLN frequencies of T follicular helper cells and Tregs in ILD patients. Together, we demonstrate that end-stage ILD patients have converging immune mechanisms, in part driven by antigen-specific immune responses, which may contribute to disease progression.

11.
bioRxiv ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36523400

RESUMO

Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of SARS-CoV-2 infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2 positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls, as long as 154 days after their positive test. These results were confirmed and extended in the K18-hACE2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the United States), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila . Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology. IMPORTANCE: Taken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2 it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.

12.
Nat Metab ; 4(11): 1442-1443, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333489

Assuntos
Amigos , Hábitos , Humanos
13.
Biochemistry ; 61(11): 963-980, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35511584

RESUMO

Multiple mutations have been seen to undergo convergent evolution in SARS-CoV-2 variants of concern. One such evolution occurs in Beta, Gamma, and Omicron variants at three amino acid positions K417, E484, and N501 in the receptor binding domain of the spike protein. We examined the physical mechanisms underlying the convergent evolution of three mutations K417T/E484K/N501Y by delineating the individual and collective effects of mutations on binding to angiotensin converting enzyme 2 receptor, immune escape from neutralizing antibodies, protein stability, and expression. Our results show that each mutation serves a distinct function that improves virus fitness supporting its positive selection, even though individual mutations have deleterious effects that make them prone to negative selection. Compared to the wild-type, K417T escapes Class 1 antibodies and has increased stability and expression; however, it has decreased receptor binding. E484K escapes Class 2 antibodies; however, it has decreased receptor binding, stability, and expression. N501Y increases receptor binding; however, it has decreased stability and expression. When these mutations come together, the deleterious effects are mitigated due to the presence of compensatory effects. Triple mutant K417T/E484K/N501Y has increased receptor binding, escapes both Class 1 and Class 2 antibodies, and has similar stability and expression as that of the wild-type. These results show that the convergent evolution of multiple mutations enhances viral fitness on different fronts by balancing both positive and negative selection and improves the chances of selection of mutations together.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , COVID-19/genética , Humanos , Mutação , Ligação Proteica/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
J Mol Biol ; 434(13): 167622, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533762

RESUMO

Among the five known SARS-CoV-2 variants of concern, Delta is the most virulent leading to severe symptoms and increased mortality among infected people. Our study seeks to examine how the biophysical parameters of the Delta variant correlate to the clinical observations. Receptor binding domain (RBD) is the first point of contact with the human host cells and is the immunodominant form of the spike protein. Delta variant RBD contains two novel mutations L452R and T478K. We examined the effect of single as well as the double mutations on RBD expression in human Expi293 cells, RBD stability using urea and thermal denaturation, and RBD binding to angiotensin converting enzyme 2 (ACE2) receptor and to neutralizing antibodies using isothermal titration calorimetry. Delta variant RBD showed significantly higher expression compared to the wild-type RBD, and the increased expression is due to L452R mutation. Despite their non-conservative nature, none of the mutations significantly affected RBD structure and stability. All mutants showed similar binding affinity to ACE2 and to Class 1 antibodies (CC12.1 and LY-CoV016) as that of the wild-type. Delta double mutant L452R/T478K showed no binding to Class 2 antibodies (P2B-2F6 and LY-CoV555) and a hundred-fold weaker binding to a Class 3 antibody (REGN10987), and the decreased antibody binding is determined by the L452R mutation. These results indicate that the immune escape from neutralizing antibodies, rather than increased receptor binding, is the main biophysical parameter that determined the fitness landscape of the Delta variant RBD.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/metabolismo , COVID-19 , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais Humanizados , COVID-19/genética , COVID-19/virologia , Humanos , Evasão da Resposta Imune , Mutação , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Cell Host Microbe ; 30(1): 17-30.e9, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34822777

RESUMO

Bacterial activation of T helper 17 (Th17) cells exacerbates mouse models of autoimmunity, but how human-associated bacteria impact Th17-driven disease remains elusive. We show that human gut Actinobacterium Eggerthella lenta induces intestinal Th17 activation by lifting inhibition of the Th17 transcription factor Rorγt through cell- and antigen-independent mechanisms. E. lenta is enriched in inflammatory bowel disease (IBD) patients and worsens colitis in a Rorc-dependent manner in mice. Th17 activation varies across E. lenta strains, which is attributable to the cardiac glycoside reductase 2 (Cgr2) enzyme. Cgr2 is sufficient to induce interleukin (IL)-17a, a major Th17 cytokine. cgr2+ E. lenta deplete putative steroidal glycosides in pure culture; related compounds are negatively associated with human IBD severity. Finally, leveraging the sensitivity of Cgr2 to dietary arginine, we prevented E. lenta-induced intestinal inflammation in mice. Together, these results support a role for human gut bacterial metabolism in driving Th17-dependent autoimmunity.


Assuntos
Colite/metabolismo , Microbioma Gastrointestinal/fisiologia , Ativação Linfocitária/fisiologia , Células Th17/metabolismo , Actinobacteria , Animais , Bactérias/metabolismo , Colite/imunologia , Citocinas , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
16.
Elife ; 102021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617511

RESUMO

East Asians (EAs) experience worse metabolic health outcomes compared to other ethnic groups at lower body mass indices; however, the potential role of the gut microbiota in contributing to these health disparities remains unknown. We conducted a multi-omic study of 46 lean and obese East Asian and White participants living in the San Francisco Bay Area, revealing marked differences between ethnic groups in bacterial richness and community structure. White individuals were enriched for the mucin-degrading Akkermansia muciniphila. East Asian subjects had increased levels of multiple bacterial phyla, fermentative pathways detected by metagenomics, and the short-chain fatty acid end-products acetate, propionate, and isobutyrate. Differences in the gut microbiota between the East Asian and White subjects could not be explained by dietary intake, were more pronounced in lean individuals, and were associated with current geographical location. Microbiome transplantations into germ-free mice demonstrated stable diet- and host genotype-independent differences between the gut microbiotas of East Asian and White individuals that differentially impact host body composition. Taken together, our findings add to the growing body of literature describing microbiome variations between ethnicities and provide a starting point for defining the mechanisms through which the microbiome may shape disparate health outcomes in East Asians.


The community of microbes living in the human gut varies based on where a person lives, in part because of differences in diets but also due to factors still incompletely understood. In turn, this 'microbiome' may have wide-ranging effects on health and diseases such as obesity and diabetes. Many scientists want to understand how differences in the microbiome emerge between people, and whether this may explain why certain diseases are more common in specific populations. Self-identified race or ethnicity can be a useful tool in that effort, as it can serve as a proxy for cultural habits (such as diets) or genetic information. In the United States, self-identified East Asian Americans often have worse 'metabolic health' (e.g. levels of sugar or certain fat molecules in the blood) at a lower weight than those identifying as White. Ang, Alba, Upadhyay et al. investigated whether this health disparity was linked to variation in the gut microbiome. Samples were collected from 46 lean and obese individuals living in the San Francisco Bay Area who identified as White or East Asian. The analyses showed that while the gut microbiome of White participants changed in association with obesity, the microbiomes of East Asian participants were distinct from their White counterparts even at normal weight, with features mirroring what was seen in White individuals in the context of obesity. Although these differences were connected to people's current address, they were not attributable to dietary differences. Ang, Alba, Upadhyay et al. then transplanted the microbiome of the participants into genetically identical mice with microbe-free guts. The differences between the gut microbiomes of White and East Asian participants persisted in recipient animals. When fed the same diet, the mice also gained different amounts of weight depending on the ethnic identity of the microbial donor. These results show that self-identified ethnicity may be an important variable to consider in microbiome studies, alongside other factors such as geography. Ultimately, this research may help to design better, more personalized treatments for an array of conditions.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Metagenoma , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , California , Ásia Oriental/etnologia , Fezes/microbiologia , Metabolismo , Metagenômica , São Francisco
17.
J Biol Chem ; 297(4): 101208, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543625

RESUMO

Emergence of new severe acute respiratory syndrome coronavirus 2 variants has raised concerns related to the effectiveness of vaccines and antibody therapeutics developed against the unmutated wildtype virus. Here, we examined the effect of the 12 most commonly occurring mutations in the receptor-binding domain of the spike protein on its expression, stability, activity, and antibody escape potential. Stability was measured using thermal denaturation, and the activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding to the human angiotensin-converting enzyme 2 and to neutralizing human antibody CC12.1, respectively. Our results show that mutants differ in their expression levels. Of the eight best-expressed mutants, two (N501Y and K417T/E484K/N501Y) showed stronger affinity to angiotensin-converting enzyme 2 compared with the wildtype, whereas four (Y453F, S477N, T478I, and S494P) had similar affinity and two (K417N and E484K) had weaker affinity than the wildtype. Compared with the wildtype, four mutants (K417N, Y453F, N501Y, and K417T/E484K/N501Y) had weaker affinity for the CC12.1 antibody, whereas two (S477N and S494P) had similar affinity, and two (T478I and E484K) had stronger affinity than the wildtype. Mutants also differ in their thermal stability, with the two least stable mutants showing reduced expression. Taken together, these results indicate that multiple factors contribute toward the natural selection of variants, and all these factors need to be considered to understand the evolution of the virus. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that variant.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Reações Antígeno-Anticorpo , COVID-19/patologia , COVID-19/virologia , Células HEK293 , Humanos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Domínios Proteicos/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Temperatura de Transição
18.
J Mol Biol ; 432(20): 5649-5664, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32835659

RESUMO

The folding landscape of proteins can change during evolution with the accumulation of mutations that may introduce entropic or enthalpic barriers in the protein folding pathway, making it a possible substrate of molecular chaperones in vivo. Can the nature of such physical barriers of folding dictate the feasibility of chaperone-assistance? To address this, we have simulated the evolutionary step to chaperone-dependence keeping GroEL/ES as the target chaperone and GFP as a model protein in an unbiased screen. We find that the mutation conferring GroEL/ES dependence in vivo and in vitro encode an entropic trap in the folding pathway rescued by the chaperonin. Additionally, GroEL/ES can edit the formation of non-native contacts similar to DnaK/J/E machinery. However, this capability is not utilized by the substrates in vivo. As a consequence, GroEL/ES caters to buffer mutations that predominantly cause entropic traps, despite possessing the capacity to edit both enthalpic and entropic traps in the folding pathway of the substrate protein.


Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Sítios de Ligação , Chaperonina 60/genética , Chaperoninas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico , Cinética , Chaperonas Moleculares/genética , Mutação
19.
Med ; 1(1): 43-65, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32838361

RESUMO

Respiratory viral infections remain a scourge, with seasonal influenza infecting millions and killing many thousands annually and viral pandemics, such as COVID-19, recurring every decade. Age, cardiovascular disease, and diabetes mellitus are risk factors for severe disease and death from viral infection. Immunometabolic therapies for these populations hold promise to reduce the risks of death and disability. Such interventions have pleiotropic effects that might not only target the virus itself but also enhance supportive care to reduce cardiopulmonary complications, improve cognitive resilience, and facilitate functional recovery. Ketone bodies are endogenous metabolites that maintain cellular energy but also feature drug-like signaling activities that affect immune activity, metabolism, and epigenetics. Here, we provide an overview of ketone body biology relevant to respiratory viral infection, focusing on influenza A and severe acute respiratory syndrome (SARS)-CoV-2, and discuss the opportunities, risks, and research gaps in the study of exogenous ketone bodies as novel immunometabolic interventions in these diseases.


Assuntos
COVID-19 , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Corpos Cetônicos , Pandemias/prevenção & controle , SARS-CoV-2
20.
Cell ; 181(6): 1263-1275.e16, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32437658

RESUMO

Very low-carbohydrate, high-fat ketogenic diets (KDs) induce a pronounced shift in metabolic fuel utilization that elevates circulating ketone bodies; however, the consequences of these compounds for host-microbiome interactions remain unknown. Here, we show that KDs alter the human and mouse gut microbiota in a manner distinct from high-fat diets (HFDs). Metagenomic and metabolomic analyses of stool samples from an 8-week inpatient study revealed marked shifts in gut microbial community structure and function during the KD. Gradient diet experiments in mice confirmed the unique impact of KDs relative to HFDs with a reproducible depletion of bifidobacteria. In vitro and in vivo experiments showed that ketone bodies selectively inhibited bifidobacterial growth. Finally, mono-colonizations and human microbiome transplantations into germ-free mice revealed that the KD-associated gut microbiota reduces the levels of intestinal pro-inflammatory Th17 cells. Together, these results highlight the importance of trans-kingdom chemical dialogs for mediating the host response to dietary interventions.


Assuntos
Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Intestinos/microbiologia , Células Th17/imunologia , Células Th17/fisiologia , Adolescente , Adulto , Animais , Dieta Hiperlipídica/métodos , Dieta Cetogênica/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , Microbiota/fisiologia , Pessoa de Meia-Idade , Células Th17/microbiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...