Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; : e202400070, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664978

RESUMO

This research presents a comprehensive study focused on the design, implementation, and analysis of an innovative fiber Bragg grating (FBG) based foot pressure assessment system. FBG sensors strategically placed on the great toe, metatarsal 1, metatarsal 2, and heel provided distinct peak resonant wavelengths, strains, and pressures during experimental cycles. Participant 1 exhibited peak resonant wavelength of 1537.745 nm for great toe, 1537.792 nm for metatarsal 1, 1537.812 nm for metatarsal 2, and 1537.824 nm for heel. Participant 2 showcased distinct graphical representations with peak resonant wavelengths ranging from 1537.903 to 1537.917 nm. In a fracture patient condition, the FBG-based system monitored weight-bearing capacity, integrated with real-time X-ray imaging for dynamic insights of rehabilitation as distinct approach. The strains and pressures at each position exhibited notable variations along with the sensitivity of 1.31µÎµ obtained across all positions, underscoring the FBG-based system's reliability in capturing subtle foot pressure.

2.
Front Public Health ; 9: 759032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926383

RESUMO

This study presented an overview of current developments in optical micro-electromechanical systems in biomedical applications. Optical micro-electromechanical system (MEMS) is a particular class of MEMS technology. It combines micro-optics, mechanical elements, and electronics, called the micro-opto electromechanical system (MOEMS). Optical MEMS comprises sensing and influencing optical signals on micron-level by incorporating mechanical, electrical, and optical systems. Optical MEMS devices are widely used in inertial navigation, accelerometers, gyroscope application, and many industrial and biomedical applications. Due to its miniaturised size, insensitivity to electromagnetic interference, affordability, and lightweight characteristic, it can be easily integrated into the human body with a suitable design. This study presented a comprehensive review of 140 research articles published on photonic MEMS in biomedical applications that used the qualitative method to find the recent advancement, challenges, and issues. The paper also identified the critical success factors applied to design the optimum photonic MEMS devices in biomedical applications. With the systematic literature review approach, the results showed that the key design factors could significantly impact design, application, and future scope of work. The literature of this paper suggested that due to the flexibility, accuracy, design factors efficiency of the Fibre Bragg Grating (FBG) sensors, the demand has been increasing for various photonic devices. Except for FBG sensing devices, other sensing systems such as optical ring resonator, Mach-Zehnder interferometer (MZI), and photonic crystals are used, which still show experimental stages in the application of biosensing. Due to the requirement of sophisticated fabrication facilities and integrated systems, it is a tough choice to consider the other photonic system. Miniaturisation of complete FBG device for biomedical applications is the future scope of work. Even though there is a lot of experimental work considered with an FBG sensing system, commercialisation of the final FBG device for a specific application has not been seen noticeable progress in the past.


Assuntos
Sistemas Microeletromecânicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...