Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(45): 9788-9801, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37924296

RESUMO

This study investigates the photoacidity and excited state proton transfer (ESPT) pathways of a bifunctional molecule, 6-amino-2-naphthol (6N2OH), using absorption, steady-state fluorescence, time-resolved fluorescence, and theoretical calculations. 6N2OH attains four different prototropic forms in the excited state (cation, neutral, anion, or zwitterion) depending on pH of the solution. Interestingly, ESPT at the OH site of the molecule can be controlled by the protonation state of the amino substituent. Conversion of the electron donating NH2 group to the electron withdrawing NH3+ group brings about a reduction of more than 7 pKa units for the deprotonation of OH in the excited state. Further, the position of the NH2 substituent on the naphthalene framework is found to play an important role in dictating the ESPT pathways of aminonaphthols. Unlike most aminonaphthol derivatives that undergo ESPT only at the OH site, akin to substituted naphthols, 6N2OH undergoes ESPT at both OH and NH3+ sites, indicating its similarity to substituted naphthols and substituted naphthylamines. ESPT at the NH3+ site resulting in cation ↔ neutral equilibrium of 6N2OH in the excited state is well-corroborated by comparative studies with another reference photoacid, 6-amino-2-methoxynaphthalene (6N2M). Correlation of the acidity constants of 6N2OH with the σp parameters according to the Hammett model reveals that while 6N2OH can be treated either as naphthol or as naphthylamine in the ground state, the structure-function correlation cannot be extrapolated directly in the excited state, thus highlighting the rich and complex photophysics of bifunctional photoacids.

2.
Radiat Phys Chem Oxf Engl 1993 ; 206: 110785, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36685709

RESUMO

Hydroxychloroquine (HCQ) is a potential drug molecule for treating malaria. Recently it has also been tried as adjustment in Covid 19 therapy. Interaction of HCQ with free radicals is very important, which controls its stability in the environment where free radicals are generated unintentionally. In this report, we present detailed investigation on the reactions of hydrated electrons (eaq -) and hydroxyl radical (•OH) with HCQ in aqueous solution through electron pulse radiolysis technique and computational studies. The degradation of HCQ was found to be faster in the case of reaction with •OH radicals. However, the degradation could be substantially slowed down in the presence of antioxidants like ascorbic acid and gallic acid. This revealed that the stability of HCQ could be enhanced in an oxidative environment in the presence of these two compounds, which are easily available through food supplements. Various global and local reactivity parameters are also determined to understand the reactivity trend using Hard-Soft Acid-Base (HSAB) principle in the realm of the DFT methods. Computational studies were performed to elucidate the site-specific reactivity trend towards the electrophilic and nucleophilic attack by calculating the condensed Fukui index for various species of HCQ.

3.
Rapid Commun Mass Spectrom ; 33(20): 1598-1612, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31148314

RESUMO

RATIONALE: Halogenated thiophenes are an important class of compounds mostly used in the synthesis of various materials, showing unusual electronic and optical properties. The Thiophene Ring Fragmentation (TRF) process is widely used in synthetic chemistry. In this study, the fragmentation pattern of the molecular cation of halogenated thiophene, namely, 2-chlorothiophene, was monitored to establish its dissociation mechanism. METHODS: The molecular cation of 2-chlorothiophene was prepared using multiphoton excitation using a laser at 235 nm. Various product ions upon fragmentation of the molecular ion were mass analyzed using time-of-flight mass spectrometry. Laser power dependence studies were also conducted for various product ions to arrive at the dissociation mechanism. Theoretical calculations were carried out to estimate the reaction enthalpies for various reactions and compared with the experimental data available in the literature. RESULTS: The most abundant product ion was observed as the HCS+ radical cation followed by the C3 H3 + ion and the H2 CCCCS+ radical cation. Other product ions such as SCCl+ , ClHCCS+ radical cations were also observed to a lesser extent in the fragmentation pattern of the parent molecular ion. Various dissociation channels were identified and supported with ab initio calculation. It has been inferred that the TRF process is usually initiated by the H/Cl atom transfer process. The appearance energies of the various fragment ions were also estimated theoretically and compared with literature values. CONCLUSIONS: In conclusion, the fragmentation pattern of the molecular cation of 2-chlorothiophene was studied and the formation mechanisms of various product ions have been assigned. The appearance energies of the various fragment ions were also calculated. Finally, it is inferred that a TRF process is initiated by the H/Cl atom migration and subsequent ring opening either by C-C or C-S bond cleavage leading to the various isomers and their subsequent fragmentation. The ionization energies were accurately predicted for various species using ab initio calculation.

4.
J Phys Chem A ; 122(46): 9084-9092, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30383967

RESUMO

The characterization of various intermediates in the ultrafast deactivation of photoexcited ( Z, Z)-bilirubin-IXα was carried out using different computational methods. Various excited states of ( Z, Z)-bilirubin-IXα and their respective vertical excitation energies were calculated using time-dependent density functional theory (TD-DFT) employing the Coulomb-attenuating method (CAM) combined with the B3LYP functional, which is known to predict accurate results on the charge transfer excitation process. Optimized geometries and absorption spectra were determined in chloroform solvent using the polarizable continuum model incorporating the integral equation formalism. The optimized geometries of different conformers of bilirubin ( ZZ, ZE, EZ, and EE) along with their relative energies and vertical excitation energies were obtained. The geometry of the first excited state, S1, for the ZZ conformer was optimized using TD-DFT. The computational study suggests that excited-state intramolecular proton transfer (ESIPT) plays a major role in the deactivation process of ( Z, Z)-bilirubin-IXα on a shorter time scale. The lactam-lactim tautomerism that arises from the ESIPT process gives rise to various intermediates of ( Z, Z)-bilirubin-IXα. The computational results nicely corroborate the experimental findings available in the literature.


Assuntos
Bilirrubina/química , Bilirrubina/efeitos da radiação , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Prótons , Teoria Quântica , Estereoisomerismo
5.
Rapid Commun Mass Spectrom ; 31(1): 121-128, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27788280

RESUMO

RATIONALE: 1,2,5-Thiadiazoles are an important class of compounds mostly used in synthetic chemistry, and as herbicides, insecticides, drugs, organic conductors, etc. Recently, they have been used as a source for the generation and study of nitrile N-sulfides, RCNS, and its isomers. In this study, we monitor the fragmentation pattern of ionic halogenated 1,2,5-thiadiazoles, namely, 3,4-dichloro-1,2,5-thiadiazole, which generates the nitrile sulfides, to establish its various dissociation mechanisms. METHODS: The molecular cation of 3,4-dichloro-1,2,5-thiadiazole was prepared using multiphoton excitation using a laser at 235 nm. Various product ions upon fragmentation of the molecular ion were mass analyzed using time-of-flight mass spectrometry. Laser power dependence studies were conducted for various product ions to arrive at the dissociation mechanism. Theoretical calculations were performed for the estimation of the ΔH values for various reactions to support the experimental data. RESULTS: The most abundant product ion was observed to be the NS+ radical cation followed by the S+ ion and the SCl+ radical cation. The other product ions such as the CNS+ radical cation and the ClCNS+ and ClCN+ cations were also observed to a lesser extent in the fragmentation pattern of the parent molecular ion. Various dissociation channels were identified and supported with ab initio calculations. CONCLUSIONS: In conclusion, we have studied the fragmentation pattern of the molecular cation of 3,4-dichloro-1,2,5-thiadiazole and the formation mechanisms of various product ions have been assigned. It has been also observed that most of the product ions are nitrile N-sulfides. Finally, it is inferred that there are two primary paths for the fragmentation of the parent molecular cation, namely, (1) Cl atom migration and subsequent ring opening by N-S bond cleavage and (2) direct ring opening by N-S bond cleavage. The ionization energies were accurately predicted for various species using ab initio calculations. Copyright © 2016 John Wiley & Sons, Ltd.

6.
J Phys Chem A ; 118(7): 1185-95, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24471690

RESUMO

The photodissociation dynamics of benzoyl chloride at 235 nm has been investigated and compared with that of 2-furoyl chloride. Atomic Cl and molecular HCl channels have been detected in benzoyl chloride by employing resonance-enhanced multiphoton ionization technique and time-of-flight mass spectrometry. Both the Cl fragments, Cl((2)PJ=3/2, relative quantum yield 0.70 ± 0.15) and Cl*((2)PJ=1/2), show isotropic angular distribution and bimodal translational energy distributions. The predominant high kinetic energy channel contributes 72% to the C-Cl bond scission and arises from the S1 state having nπ* character of benzoyl chloride. However, the low-energy Cl and HCl channels originate from the ground electronic state. The most plausible mechanism of HCl formation is proposed based on molecular orbital calculations. In contrast to benzoyl chloride, the HCl channel is not observed in 2-furoyl chloride on excitation at 235 nm, and this is attributed to an energy constraint.


Assuntos
Benzoatos/química , Cloretos/química , Ácido Clorídrico/química , Fótons , Algoritmos , Anisotropia , Carbono/química , Furanos/química , Cinética , Lasers , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular
7.
J Phys Chem A ; 117(12): 2415-26, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23444923

RESUMO

The photodissociation dynamics of 1,2-cyclohexanedione (CHD), which exists in enolic form in gas phase, is studied using pulsed laser photolysis (LP)-laser induced fluorescence (LIF) "pump-and-probe" technique at room temperature. The nascent state distribution of the OH radical, formed after initial photoexcitation of the molecule to it is (π, π*) and Rydberg states, is determined. The initial (π, π*) and Rydberg states are prepared by excitation with the fourth harmonic output of Nd:YAG (266 nm)/KrF (248 nm) and ArF (193 nm) lasers, respectively. The ro-vibrational distribution of the nascent OH photofragment is measured in collision-free conditions using LIF. The OH fragments are formed in the vibrationally cold state at all the above wavelengths of excitation but differ in rotational state distributions. At 266 nm photolysis, the rotational population of OH shows a curvature in Boltzmann plot, which is fairly described by two types of Boltzmann-like distributions characterized by rotational temperatures of 3100 ± 100 and 900 ± 80 K. However, at 248 nm photolysis, the rotational distribution is described by a single rotational temperature of 950 ± 80 K. The spin-orbit and Λ-doublets ratios of OH fragments formed in the dissociation process are also measured. The average translational energy in the center-of-mass coordinate, partitioned into the photofragment pairs of the OH formation channels, is determined to be 12.5 ± 3.0, 12.7 ± 3.0, and 12.0 ± 3.0 kcal/mol at 266, 248, and 193 nm excitation, respectively. The energy partitioning into various degrees of freedom of products is interpreted with the help of different models, namely, statistical, impulsive, and hybrid models. To understand the nature of the dissociative potential energy surface involved in the OH formation channel, detailed ab initio calculations are performed using configuration interaction-singles (CIS) method. It is proposed that at 266 nm photolysis, the OH fragment is formed from two different excited state structures, one with a strong H bonding, similar to that in the ground state, and another without effective H bonding, whereas, at 248 nm photodissociation, it seems that the OH formation occurs mainly from the excited state, which lacks effective H-bonding. At 193 nm excitation, the initially prepared population in the Rydberg state crosses over to a nearby σ* repulsive state along the C-O bond, from where the dissociation takes place. The exit barrier for the OH dissociation channel is estimated to be 14 kcal/mol. The existence of dynamical constraint due to strong hydrogen bond in the ground state is effectively present in the dissociation process at 266 and somewhat deficient at 248 nm photolysis.

8.
J Phys Chem A ; 116(44): 10656-67, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23078350

RESUMO

The photodissociation dynamics of halogen-substituted thiophenes, namely, 2-chlorothiophene and 2-bromo-5-chlorothiophene, has been studied in a supersonic molecular beam around 235 nm, using resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) technique, by detecting the nascent state of the primary halogen atoms. A single laser has been used for excitation of halothiophenes, as well as for the REMPI detection of photoproducts, namely, chlorine and bromine atoms, in their spin-orbit states X((2)P(3/2)) and X*((2)P(1/2)). We have determined the translational energy distribution, the recoil anisotropy parameter, ß, and the spin-orbit branching ratio, for chlorine and bromine atom elimination channels. State-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment anisotropies, ß(ι). The TOF profiles for Cl, Cl*, Br, and Br* are found to be independent of laser polarization; i.e., the ß is well characterized by a value of ~0.0, within the experimental uncertainties. For 2-chlorothiophene, we have observed two components for the Cl and only one component for the Cl* atom elimination channel in the translational energy distributions. The average translational energies for the fast and the slow components of the Cl channel are 3.0 ± 1.0 and 1.0 ± 0.5 kcal/mol, respectively. For Cl*, the average translational energy is 3.5 ± 1.0 kcal/mol. For 2-bromo-5-chlorothiophene, we have observed only one component for Cl, Cl*, Br, and Br* in the translational energy distributions. The average translational energies for the Cl and Cl* channels are 3.5 ± 1.0 and 5.0 ± 1.0 kcal/mol, respectively, whereas the average translational energies for the Br and Br* channels are 2.0 ± 1.0 and 3.5 ± 1.0 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of various models, such as impulsive and statistical models. The ΔH(f)(298) value for 2-chlorothiophene has been estimated theoretically to be 23.5 kcal/mol.


Assuntos
Halogênios/química , Processos Fotoquímicos , Tiofenos/química , Teoria Quântica , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
9.
J Chem Phys ; 134(19): 194313, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21599065

RESUMO

The photodissociation dynamics of 3-bromo-1,1,1-trifluoro-2-propanol (BTFP) and 2-(bromomethyl) hexafluoro-2-propanol (BMHFP) have been studied at 234 nm, and the C-Br bond dissociation investigated using resonance-enhanced multiphoton ionization coupled with time-of-flight mass spectrometer (REMPI-TOFMS). Br formation is a primary process and occurs on a repulsive surface involving the C-Br bond of BTFP and BMHFP. Polarization dependent time-of-flight profiles were measured, and the translational energy distributions and recoil anisotropy parameters extracted using forward convolution fits. A strong polarization dependence of time-of-flight profiles suggest anisotropic distributions of the Br((2)P(3/2)) and Br((2)P(1/2)) fragments with anisotropy parameter, ß, of respectively 0.5 ± 0.2 and 1.2 ± 0.2 for BTFP, and 0.4 ± 0.1 and 1.0 ± 0.3 for BMHFP. The measured velocity distributions consist of a single velocity component. The average translational energies for the Br((2)P(3/2)) and Br((2)P(1/2)) channels are 9.2 ± 1.0 and 7.4 ± 0.9 kcal/mol for BTFP, and 15.4 ± 1.8 and 15.1 ± 2.0 kcal/mol for BMHFP. The relative quantum yields of Br((2)P(3/2)) and Br((2)P(1/2)), which are 0.70 ± 0.14 and 0.30 ± 0.06 in BTFP and 0.81 ± 0.16 and 0.19 ± 0.04 in BMHFP, indicate that the yield of the former is predominant. The measured anisotropy parameters for the Br((2)P(3/2)) and Br((2)P(1/2)) channels suggest that the former channel has almost equal contributions from both the parallel and the perpendicular transitions, whereas the latter channel has a significant contribution from a parallel transition. Non-adiabatic curve crossing plays an important role in the C-Br bond dissociation of both BTFP and BMHFP. The estimated curve crossing probabilities suggest a greater value in BTFP, which explains a greater observed value of the relative quantum yield of Br((2)P(1/2)) in this case.

10.
J Chem Phys ; 134(4): 044316, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280734

RESUMO

Photoexcitation of 2-bromo-2-nitropropane (BNP) at 248 and 193 nm generates OH, Br, and NO(2) among other products. The OH fragment is detected by laser-induced fluorescence spectroscopy, and its translational and internal state distributions (vibration, rotation, spin-orbit, and Λ-doubling components) are probed. At both 248 and 193 nm, the OH fragment is produced translationally hot with the energy of 10.8 and 17.2 kcal∕mol, respectively. It is produced vibrationally cold (v" = 0) at 248 nm, and excited (v" = 1) at 193 nm with a vibrational temperature of 1870 ± 150 K. It is also generated with rotational excitation, rotational populations of OH(v" = 0) being characterized by a temperature of 550 ± 50 and 925 ± 100 K at 248 and 193 nm excitation of BNP, respectively. The spin-orbit components of OH(X(2)Π) are not in equilibrium on excitation at 193 nm, but the Λ-doublets are almost in equilibrium, implying no preference for its π lobe with respect to the plane of rotation. The NO(2) product is produced electronically excited, as detected by measuring UV-visible fluorescence, at 193 nm and mostly in the ground electronic state at 248 nm. The Br product is detected employing resonance-enhanced multiphoton ionization with time-of-flight mass spectrometer for better understanding of the dynamics of dissociation. The forward convolution analysis of the experimental data has provided translational energy distributions and anisotropy parameters for both Br((2)P(3∕2)) and Br∗((2)P(1∕2)). The average translational energies for the Br and Br∗ channels are 5.0 ± 1.0 and 6.0 ± 1.5 kcal∕mol. No recoil anisotropies were observed for these products. Most plausible mechanisms of OH and Br formation are discussed based on both the experimental and the theoretical results. Results suggest that the electronically excited BNP molecules at 248 and 234 nm relax to the ground state, and subsequently dissociate to produce OH and Br through different channels. The mechanism of OH formation from BNP on excitation at 193 nm is also discussed.

11.
J Phys Chem A ; 115(9): 1538-46, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21322536

RESUMO

The photodissociation dynamics of fumaryl chloride (ClCO-CH═CH-COCl) has been studied in a supersonic molecular beam around 235 nm using resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) technique by detecting the nascent state of the primary chlorine atom. A single laser has been used for excitation of fumaryl chloride and the REMPI detection of chlorine atoms in their spin-orbit states, Cl ((2)P(3/2)) and Cl* ((2)P(1/2)). We have determined the translational energy distribution, the recoil anisotropy parameter, ß, and the spin-orbit branching ratio for chlorine atom elimination channels. To obtain these, measured polarization-dependent and state-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment recoil anisotropies, ß(i). The TOF profiles for both Cl and Cl* are found to be independent of laser polarization; i.e., ß is well characterized by a value of 0.0, within the experimental uncertainties. Two components, namely, the fast and the slow, are observed in the translational energy distribution, P(E(T)), of Cl and Cl* atoms, and assigned to be formed from different potential energy surfaces. The average translational energies for the fast components of the Cl and Cl* channels are 14.9 ± 1.6 and 16.8 ± 1.6 kcal/mol, respectively. Similarly, for the slow components, the average translational energies of the Cl and Cl* channels are 3.4 ± 0.8 and 3.1 ± 0.8 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of various models, such as impulsive and statistical models. Apart from the chlorine atom elimination channel, molecular hydrogen chloride (HCl) elimination is also observed in the photodissociation process. The HCl product has been detected, using a REMPI scheme in the region of 236-237 nm. The observation of the molecular HCl in the dissociation process highlights the importance of the relaxation process, in which the initially excited parent molecule relaxes to the ground state from where the molecular (HCl) elimination takes place.

12.
J Phys Chem A ; 114(47): 12369-77, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21058634

RESUMO

Cyclohexanone oxime (CHO) and cyclopentanone oxime (CPO) in the vapor phase undergo N-OH bond scission upon excitation at 193 nm to produce OH, which was detected state selectively employing laser-induced fluorescence. The measured energy distribution between fragments for both oximes suggests that in CHO the OH produced is mostly vibrationally cold, with moderate rotational excitation, whereas in CPO the OH fragment is also formed in v'' = 1 (~2%). The rotational population of OH (v'' = 0, J'') from CHO is characterized by a rotational temperature of 1440 ± 80 K, whereas the rotational populations of OH (v'' = 0, J'') and OH (v'' = 1, J'') from CPO are characterized by temperatures of 1360 ± 90 K and 930 ± 170 K, respectively. A high fraction of the available energy is partitioned to the relative translation of the fragments with f(T) values of 0.25 and 0.22 for CHO and CPO, respectively. In the case of CHO, the Λ-doublet states of the nascent OH radical are populated almost equally in lower rotational quantum levels N'', with a preference for Π(+) (A') states for higher N''. However, there is no preference for either of the two spin orbit states Π(3/2) and Π(1/2) of OH. The nascent OH product in CPO is equally distributed in both Λ-doublet states of Π(+) (A') and Π(-) (A'') for all N'', but has a preference for the Π(3/2) spin orbit state. Experimental work in combination with theoretical calculations suggests that both CHO and CPO molecules at 193 nm are excited to the S(2) state, which undergoes nonradiative relaxation to the T(2) state. Subsequently, molecules undergo the N-OH bond dissociation from the T(2) state with an exit barrier to produce OH (v'', J'').

13.
J Phys Chem A ; 114(16): 5271-8, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20373808

RESUMO

The photodissociation dynamics of phosphorus trichloride (PCl(3)) has been studied in a supersonic beam by resonance enhanced multiphoton ionization (REMPI), using time-of-flight (TOF) mass spectrometry. The study is focused on the nascent state of the primary chlorine atom, formed on excitation of the (n, sigma*) transition of the molecule around 235 nm. Dissociation of PCl(3) and the REMPI detection of chlorine atoms are performed, using the same laser around 235 nm. The photofragments, namely, Cl((2)P(3/2)) and Cl*((2)P(1/2)), are probed, using the 2+1 REMPI scheme in the 234-236 nm region. We have determined the photofragment speed distribution, the recoil anisotropy parameter beta, and the spin-orbit branching ratio for chlorine atom elimination channels. Polarization-dependent and state-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment anisotropies. The anisotropy parameters for Cl and Cl* are characterized by values of 0.0 +/- 0.05 and 0.20 +/- 0.05, respectively. Two components, namely, the fast and the slow, are observed in the speed distribution (P(v)) of Cl and Cl* atoms, formed from different potential energy surfaces. The average translational energies for the Cl and Cl* channels for the fast component are 29.7 and 30.6 kcal/mol, respectively. Similarly, for the slow component, the average translational energies for the Cl and Cl* channels are 9.5 and 9.1 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of an impulsive model, for the fast component, and a statistical model, for the slow component. Apart from the chlorine atom elimination channel, molecular chlorine (Cl(2)) elimination is also observed in the photodissociation of PCl(3). The observation of the molecular chlorine in the dissociation process and the bimodal translational energy distribution of the chlorine atom clearly indicate the existence of a crossover mechanism from the initially prepared state to the ground state.

14.
J Phys Chem A ; 114(14): 4905-16, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20235563

RESUMO

The reaction of O((3)P) with HCl at hyperthermal collision energies (45-116 kcal mol(-1)) has been investigated with crossed-molecular beams experiments and direct dynamics quasi-classical trajectory calculations. The reaction may proceed by two primary pathways, (1) H-atom abstraction to produce OH and Cl and (2) H-atom elimination to produce H and ClO. The H-atom abstraction reaction follows a stripping mechanism, in which the reagent O atom approaches the HCl molecule at large impact parameters and the OH product is scattered in the forward direction, defined as the initial direction of the reagent O atoms. The H-atom elimination reaction is highly endoergic and requires low-impact-parameter collisions. The excitation function for ClO increases from a threshold near 45 kcal mol(-1) to a maximum around 115 kcal mol(-1) and then begins to decrease when the ClO product can be formed with sufficient internal energy to undergo secondary dissociation. At collision energies slightly above threshold for H-atom elimination, the ClO product scatters primarily in the backward direction, but as the collision energy increases, the fraction of these products that scatter in the forward and sideways directions increases. The dependence of the angular distribution of ClO on collision energy is a result of the differences in collision geometry. Collisions where the H atom on HCl is oriented away from the incoming reagent O atom lead to backward-scattered ClO and those where the H atom is oriented toward the incoming O atom lead to forward-scattered ClO. The latter trajectories do not follow the minimum energy path and involve larger translational energy release. Therefore, they become dominant at higher collision energies because they lead to lower internal energies and more stable ClO products. The H-atom abstraction and elimination reactions have comparable cross sections for hyperthermal O((3)P) + HCl collisions.

15.
J Phys Chem A ; 113(30): 8462-70, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19588917

RESUMO

Photodissociation of 3-bromo-1,1,1-trifluoro-2-propanol (BTFP) has been investigated at 193 nm, employing the laser photolysis laser-induced fluorescence technique. The nascent OH product was detected state selectively, and the energy released into translation, rotation, and vibration of the photoproducts has been measured. OH is produced mostly vibrationally cold, with a moderate rotational excitation, which is characterized by a rotational temperature of 640 +/- 140 K. However, an appreciable amount of the available energy of 36.1 kcal mol(-1) is released into translation of OH (15.1 kcal mol(-1)). OH product has no preference for a specific spin-orbit state, Pi(3/2) or Pi(1/2). However, between two Lambda-doublet states, Pi(+) and Pi(-), the OH product has a preference for the former by a factor of 2. A mechanism of OH formation from BTFP on excitation at 193 nm is proposed, which involves first the direct C-Br bond dissociation from a repulsive state (n(Br)sigma*(C-Br)) as a primary process. The primary product, F(3)C-CH(OH)-CH(2), with sufficient internal energy undergoes spontaneous C-OH bond dissociation, through a loose transition state. The formation rate of OH is calculated to be 5.8 x 10(6) s(-1) using Rice-Ramsperger-Kassel-Marcus unimolecular rate theory. Experimental results have been supported by theoretical calculations, and energies of various low-energy dissociation channels of the primary product, F(3)C-CH(OH)-CH(2), have been calculated.


Assuntos
Radical Hidroxila/química , Lasers , Propanóis/química , Fluorescência , Fotoquímica , Fotólise
16.
Chemistry ; 15(21): 5215-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19360836

RESUMO

On or off? A new excimer band at lambda = 570 nm was visualized during the noncovalent host-guest interaction between thioflavin T (ThT) and cucurbit[8]uril (CB8). Controlled dissociation of this assembly in the presence of Ca(2+) was demonstrated as an on/off fluorescence switch (see picture).

17.
J Phys Chem A ; 113(16): 4677-85, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19301890

RESUMO

Beam-surface scattering experiments and theoretical direct dynamics based on density functional theory calculations are used to investigate hyperthermal collisions between O((3)P) and highly oriented pyrolytic graphite (HOPG). The simulations suggest that the HOPG surface becomes functionalized with epoxide groups. Intersystem crossing (ISC) between the lowest-energy triplet and singlet potential-energy surfaces is not necessary for this functionalization to occur. Both theory and experiment indicate that incoming O atoms can react at the surface to form O(2) by way of an Eley-Rideal mechanism. They also suggest that the collisions can result in the production of CO and CO(2) by way of both direct and complex reaction mechanisms. The direct dynamics simulations provide significant insight into the details of the complex reaction mechanisms. Semiquinones are present at defect sites and can form in functionalized pristine sheets, the latter resulting in the formation of a defect. Direct collision of an incoming O atom with a semiquinone or vibrational excitation caused by a nearby O-atom collision can cause the release of the semiquinone CO, forming carbon monoxide. The CO may react with an oxygen atom on the surface to become CO(2) before receding from the surface. The simulations also illustrate how epoxide groups neighboring semiquinones catalyze the release of CO. Throughout, the experimental results are observed to be consistent with the theoretical calculations.

18.
J Phys Chem B ; 113(7): 1891-8, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19175303

RESUMO

Noncovalent interaction of Thioflavin T (ThT) with versatile macrocyclic host molecules, namely, cucurbit[7]uril (CB7) and cucurbit[5]uril (CB5), has been investigated in aqueous solutions by photophysical methods. Steady-state and time-resolved fluorescence studies illustrate significant enhancements/modifications in the ThT fluorescence yield, lifetime, and spectral features on interaction with the CBs and are assigned due to the formation of 1:1 and 2:1 complexes between the CBs and the ThT. The high binding constant values for the 1:1 complex (K(1) approximately 10(5) M(-1)) indicate the strong ion-dipole interaction between the host and guest molecules, whereas the 2:1 complex formation is mainly driven by weaker forces like hydrophobic interaction as evident from the lower binding constants (K(2) approximately 10(3) M(-1)). From the characteristic differences in the photophysical properties of the CB7-ThT and CB5-ThT complexes, it has been adjudged that ThT forms an inclusion complex with CB7 whereas with CB5, the interaction is through an exclusion complex formation. These contentions have been further verified by the rotational relaxation dynamics, NMR, and quantum chemical calculations on CB-ThT systems. The present results have also been compared with those reported for the dye in the presence of cyclodextrin hosts.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Tiazóis/química , Benzotiazóis , Simulação por Computador , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Fotoquímica , Soluções , Espectrometria de Fluorescência , Fatores de Tempo , Água/química
19.
ACS Appl Mater Interfaces ; 1(1): 187-96, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20355771

RESUMO

Beam-surface scattering experiments were used to probe products that scattered from FEP Teflon surfaces during bombardment by various combinations of atomic and molecular oxygen, Ar atoms, and vacuum ultraviolet (VUV) light. A laser-breakdown source was used to create hyperthermal (translational energies in the range 4-13 eV) beams of argon and atomic/molecular oxygen. The average incidence energy of these beams was tunable and was controlled precisely with a synchronized chopper wheel. A filtered deuterium lamp provided a source of VUV light in a narrow-wavelength range centered at 161 nm. Volatile products that exited the surfaces were monitored with a rotatable mass spectrometer detector. Hyperthermal O atoms with average translational energies above approximately 4 eV may react directly with a pristine FEP Teflon surface, and the reactivity appears to increase with the translational energy of the incident O atoms. VUV light or highly energetic collisions of O2 or Ar may break chemical bonds and lead to the ejection of volatile products; the ejection of volatile products is enhanced when the surface is subjected to VUV light and energetic collisions simultaneously. Exposure to VUV light or to hyperthermal O2 or Ar may increase the reactivity of an FEP Teflon surface to O atoms.


Assuntos
Argônio/química , Espectrometria de Massas/métodos , Oxigênio/química , Politetrafluoretileno/análogos & derivados , Politetrafluoretileno/química , Deutério , Meio Ambiente Extraterreno , Politetrafluoretileno/efeitos da radiação , Espalhamento de Radiação , Voo Espacial , Raios Ultravioleta , Vácuo
20.
ACS Appl Mater Interfaces ; 1(3): 653-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20355987

RESUMO

A combination of beam-surface-scattering, quartz-crystal-microbalance, and surface-recession experiments was conducted to study the effects of various combinations of O atoms [in the O((3)P) ground state], Ar atoms, and vacuum ultraviolet (VUV) light on fluorinated ethylene-propylene copolymer (FEP) Teflon and poly(methyl methacrylate) (PMMA). A laser-breakdown source was used to create hyperthermal beams containing O and O(2) or Ar. A D(2) lamp provided a source of VUV light. O atoms with 4 eV of translational energy or less did not react with a pristine FEP Teflon surface. Volatile O-containing reaction products were observed when the O-atom energy was higher than 4.5 eV, and the signal increased with the O-atom energy. Significant erosion of FEP Teflon ( approximately 20% of Kapton H) was observed when it was exposed to the hyperthermal O/O(2) beam with an average O-atom energy of 5.4 eV. FEP Teflon and PMMA that were exposed to VUV light alone exhibited much less mass loss. Collision-induced dissociation by hyperthermal Ar atoms also caused mass loss, similar in magnitude to that caused by VUV light. There were no observed synergistic effects when VUV light or Ar bombardment was combined with O/O(2) exposure. For both FEP Teflon and PMMA, the erosion yields caused by simultaneous exposure to O/O(2) and either VUV light or Ar atoms could be approximately predicted by adding the erosion yield caused by O/O(2), acting individually, to the erosion yield caused by the individual action of either VUV light or Ar atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...