Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 26(5): 707-721.e5, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229310

RESUMO

Adipocyte progenitors (APs) express platelet-derived growth factor receptors (PDGFRs), PDGFRα and PDGFRß. Elevated PDGFRα signaling inhibits adipogenesis and promotes fibrosis; however, the function of PDGFRs in APs remains unclear. We combined lineage tracing and functional analyses in a sequential dual-recombinase approach that creates mosaic Pdgfr mutant cells by Cre/lox recombination with a linked Flp/frt reporter to track individual cell fates. Using mosaic lineage labeling, we show that adipocytes are derived from the Pdgfra lineage during postnatal growth and adulthood. In contrast, adipocytes are only derived from the mosaic Pdgfrb lineage during postnatal growth. Functionally, postnatal mosaic deletion of PDGFRα enhances adipogenesis and adult deletion enhances ß3-adrenergic-receptor-induced beige adipocyte formation. Mosaic deletion of PDGFRß also enhances white, brown, and beige adipogenesis. These data show that both PDGFRs are cell-autonomous inhibitors of adipocyte differentiation and implicate downregulation of PDGF signaling as a critical event in the transition from AP to adipocyte.


Assuntos
Adipogenia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Adipócitos , Adipogenia/genética , Animais , Diferenciação Celular/genética , Técnicas de Introdução de Genes , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
2.
PLoS Genet ; 12(9): e1006334, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27690235

RESUMO

DNA methyltransferase 3A (DNMT3A) is an enzyme involved in DNA methylation that is frequently mutated in human hematologic malignancies. We have previously shown that inactivation of Dnmt3a in hematopoietic cells results in chronic lymphocytic leukemia in mice. Here we show that 12% of Dnmt3a-deficient mice develop CD8+ mature peripheral T cell lymphomas (PTCL) and 29% of mice are affected by both diseases. 10% of Dnmt3a+/- mice develop lymphomas, suggesting that Dnmt3a is a haploinsufficient tumor suppressor in PTCL. DNA methylation was deregulated genome-wide with 10-fold more hypo- than hypermethylated promoters and enhancers, demonstrating that hypomethylation is a major event in the development of PTCL. Hypomethylated promoters were enriched for binding sites of transcription factors AML1, NF-κB and OCT1, implying the transcription factors potential involvement in Dnmt3a-associated methylation. Whereas 71 hypomethylated genes showed an increased expression in PTCL, only 3 hypermethylated genes were silenced, suggesting that cancer-specific hypomethylation has broader effects on the transcriptome of cancer cells than hypermethylation. Interestingly, transcriptomes of Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas were largely conserved and significantly overlapped with those of human tumors. Importantly, we observed downregulation of tumor suppressor p53 in Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas as well as in pre-tumor thymocytes from 9 months old but not 6 weeks old Dnmt3a+/- tumor-free mice, suggesting that p53 downregulation is chronologically an intermediate event in tumorigenesis. Decrease in p53 is likely an important event in tumorigenesis because its overexpression inhibited proliferation in mouse PTCL cell lines, suggesting that low levels of p53 are important for tumor maintenance. Altogether, our data link the haploinsufficient tumor suppressor function of Dnmt3a in the prevention of mouse mature CD8+ PTCL indirectly to a bona fide tumor suppressor of T cell malignancies p53.

3.
Cell Rep ; 15(6): 1190-201, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27134162

RESUMO

DNA methyltransferase 3a (DNMT3A) catalyzes the formation of 5-methyl-cytosine in mammalian genomic DNA, and it is frequently mutated in human hematologic malignancies. Bi-allelic loss of Dnmt3a in mice results in leukemia and lymphoma, including chronic lymphocytic leukemia (CLL). Here, we investigate whether mono-allelic loss of Dnmt3a is sufficient to induce disease. We show that, by 16 months of age, 65% of Dnmt3a(+/-) mice develop a CLL-like disease, and 15% of mice develop non-malignant myeloproliferation. Genome-wide methylation analysis reveals that reduced Dnmt3a levels induce promoter hypomethylation at similar loci in Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL, suggesting that promoters are particularly sensitive to Dnmt3a levels. Gene expression analysis identified 26 hypomethylated and overexpressed genes common to both Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL as putative oncogenic drivers. Our data provide evidence that Dnmt3a is a haplo-insufficient tumor suppressor in CLL and highlights the importance of deregulated molecular events in disease pathogenesis.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Regiões Promotoras Genéticas , Animais , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA Metiltransferase 3A , Heterozigoto , Humanos , Camundongos , Transcrição Gênica , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA