Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 482(2): 346-351, 2017 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-27856258

RESUMO

The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.


Assuntos
Aspirina/administração & dosagem , Ácidos Graxos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Anti-Inflamatórios não Esteroides/administração & dosagem , Respiração Celular/fisiologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Taxa de Depuração Metabólica/efeitos dos fármacos , Oxirredução
2.
J Biol Chem ; 291(51): 26241-26251, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27738108

RESUMO

Hepatoblastoma (HB) is associated with aberrant activation of the ß-catenin and Hippo/YAP signaling pathways. Overexpression of mutant ß-catenin and YAP in mice induces HBs that express high levels of c-Myc (Myc). In light of recent observations that Myc is unnecessary for long-term hepatocyte proliferation, we have now examined its role in HB pathogenesis using the above model. Although Myc was found to be dispensable for in vivo HB initiation, it was necessary to sustain rapid tumor growth. Gene expression profiling identified key molecular differences between myc+/+ (WT) and myc-/- (KO) hepatocytes and HBs that explain these behaviors. In HBs, these included both Myc-dependent and Myc-independent increases in families of transcripts encoding ribosomal proteins, non-structural factors affecting ribosome assembly and function, and enzymes catalyzing glycolysis and lipid bio-synthesis. In contrast, transcripts encoding enzymes involved in fatty acid ß-oxidation were mostly down-regulated. Myc-independent metabolic changes associated with HBs included dramatic reductions in mitochondrial mass and oxidative function, increases in ATP content and pyruvate dehydrogenase activity, and marked inhibition of fatty acid ß-oxidation (FAO). Myc-dependent metabolic changes included higher levels of neutral lipid and acetyl-CoA in WT tumors. The latter correlated with higher histone H3 acetylation. Collectively, our results indicate that the role of Myc in HB pathogenesis is to impose mutually dependent changes in gene expression and metabolic reprogramming that are unattainable in non-transformed cells and that cooperate to maximize tumor growth.


Assuntos
Regulação Neoplásica da Expressão Gênica , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/genética
4.
J Biol Chem ; 290(39): 23897-904, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26240137

RESUMO

The role of mitochondrial energy metabolism in maintaining lung function is not understood. We previously observed reduced lung function in mice lacking the fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD). Here, we demonstrate that long-chain acylcarnitines, a class of lipids secreted by mitochondria when metabolism is inhibited, accumulate at the air-fluid interface in LCAD(-/-) lungs. Acylcarnitine accumulation is exacerbated by stress such as influenza infection or by dietary supplementation with l-carnitine. Long-chain acylcarnitines co-localize with pulmonary surfactant, a unique film of phospholipids and proteins that reduces surface tension and prevents alveolar collapse during breathing. In vitro, the long-chain species palmitoylcarnitine directly inhibits the surface adsorption of pulmonary surfactant as well as its ability to reduce surface tension. Treatment of LCAD(-/-) mice with mildronate, a drug that inhibits carnitine synthesis, eliminates acylcarnitines and improves lung function. Finally, acylcarnitines are detectable in normal human lavage fluid. Thus, long-chain acylcarnitines may represent a risk factor for lung injury in humans with dysfunctional fatty acid oxidation.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Carnitina/análogos & derivados , Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Fosfolipídeos/metabolismo , Surfactantes Pulmonares/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Carnitina/genética , Carnitina/metabolismo , Humanos , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Camundongos , Camundongos Knockout , Fosfolipídeos/genética
5.
Biochem Biophys Res Commun ; 463(4): 806-10, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26051273

RESUMO

Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias/efeitos dos fármacos , Níquel/farmacologia , Western Blotting , Células Cultivadas , Humanos , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Especificidade por Substrato
6.
PLoS One ; 10(3): e0122297, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811481

RESUMO

SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Cardiolipinas/metabolismo , Sirtuína 3/metabolismo , Sirtuínas/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/química , Acilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cardiolipinas/química , Domínio Catalítico , Ativação Enzimática , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Sirtuína 3/química , Sirtuína 3/genética , Sirtuínas/química , Sirtuínas/genética
7.
Hum Mol Genet ; 24(11): 3238-47, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25721401

RESUMO

Acyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients. First, we confirmed that HEK293 cells express ACAD9 abundantly. Then, we showed that ACAD9 knockout in HEK293 cells affected long-chain fatty acid oxidation along with Cl, both of which were rescued by wild type ACAD9. Further, we evaluated whether the loss of ACAD9 enzymatic fatty acid oxidation affects clinical severity in patients with ACAD9 mutations. The effects on ACAD activity of 16 ACAD9 mutations identified in 24 patients were evaluated using a prokaryotic expression system. We showed that there was a significant inverse correlation between residual enzyme ACAD activity and phenotypic severity of ACAD9-deficient patients. These results provide evidence that in cells where it is strongly expressed, ACAD9 plays a physiological role in fatty acid oxidation, which contributes to the severity of the phenotype in ACAD9-deficient patients. Accordingly, treatment of ACAD9 patients should aim at counteracting both CI and fatty acid oxidation dysfunctions.


Assuntos
Acil-CoA Desidrogenases/genética , Complexo I de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Doenças Mitocondriais/enzimologia , Acil-CoA Desidrogenases/deficiência , Animais , Estudos de Associação Genética , Células HEK293 , Humanos , Camundongos , Doenças Mitocondriais/patologia , Mutação de Sentido Incorreto , Oxirredução , Multimerização Proteica , Índice de Gravidade de Doença
8.
PLoS One ; 9(8): e106028, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25165814

RESUMO

SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.


Assuntos
Glicólise , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Sirtuína 3/metabolismo , Sirtuínas/metabolismo , Respiração Celular , Glucose/farmacologia , Células HEK293 , Humanos , Proteínas Mitocondriais/genética , Consumo de Oxigênio , Sirtuína 3/genética , Sirtuínas/genética
9.
J Biol Chem ; 289(36): 25382-92, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25053415

RESUMO

myc(-/-) rat fibroblasts (KO cells) differ from myc(+/+) (WT) cells and KO cells with enforced Myc re-expression (KO-Myc cells) with respect to mitochondrial structure and function, utilization of glucose and glutamine as energy-generating substrates, and ATP levels. Specifically, KO cells demonstrate low levels of glycolysis and oxidative phosphorylation, dysfunctional mitochondria and electron transport chain complexes, and depleted ATP stores. We examined here how these cells adapt to their energy-deficient state and how they differ in their uptake and utilization of long- and medium-chain fatty acids such as palmitate and octanoate, respectively. Metabolic tracing of these molecules showed that KO cells preferentially utilize them as ß-oxidation substrates and that, rather than directing them into phospholipids, preferentially store them as neutral lipids. KO cell transcriptional profiling and functional assays revealed a generalized up-regulation of pathways involved in fatty acid transport and catabolism as well as evidence that these cells attempt to direct acetyl-CoA into the tricarboxylic acid (TCA) cycle for ATP production rather than utilizing it for anabolic purposes. Additional evidence to support this idea included the finding that AMP-dependent protein kinase was constitutively activated in KO cells. The complex control of pyruvate dehydrogenase, which links glycolysis to the TCA cycle, was also maximized to ensure the conversion of pyruvate to acetyl-CoA. Despite these efforts to maximize acetyl-CoA for energy-generating purposes, its levels remained chronically low in KO cells. This suggests that tumor cells with Myc deregulation might be susceptible to novel therapies that limit acetyl-CoA availability.


Assuntos
Acetilcoenzima A/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Fibroblastos/citologia , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Glicólise , Humanos , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Metabolismo dos Lipídeos , Redes e Vias Metabólicas/genética , Oxirredução , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-myc/genética , Ácido Pirúvico/metabolismo , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Biol Chem ; 289(15): 10668-10679, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24591516

RESUMO

Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Erros Inatos do Metabolismo Lipídico/metabolismo , Pneumopatias/etiologia , Surfactantes Pulmonares/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Adulto , Animais , Brônquios/metabolismo , Linhagem Celular Tumoral , Coenzima A/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Pulmão/metabolismo , Pneumopatias/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigênio/metabolismo , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Polimorfismo Genético , Alvéolos Pulmonares/metabolismo
11.
Endocrinology ; 155(4): 1255-67, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24437489

RESUMO

Excessive production of triglyceride-rich very low-density lipoproteins (VLDL-TG) contributes to hypertriglyceridemia in obesity and type 2 diabetes. To understand the underlying mechanism, we studied hepatic regulation of VLDL-TG production by (forkhead box O6) FoxO6, a forkhead transcription factor that integrates insulin signaling to hepatic metabolism. We showed that transgenic mice expressing a constitutively active FoxO6 allele developed hypertriglyceridemia, culminating in elevated VLDL-TG levels and impaired postprandial TG clearance. This effect resulted in part from increased hepatic VLDL-TG production. We recapitulated these findings in cultured HepG2 cells and human primary hepatocytes, demonstrating that FoxO6 promoted hepatic VLDL-TG secretion. This action correlated with the ability of FoxO6 to stimulate hepatic production of microsomal triglyceride transfer protein (MTP), a molecular chaperone that catalyzes the rate-limiting step in VLDL-TG assembly and secretion. FoxO6 was shown to bind to the MTP promoter and stimulate MTP promoter activity in HepG2 cells. This effect was inhibited by insulin, consistent with the ability of insulin to promote FoxO6 phosphorylation and disable FoxO6 DNA-binding activity. Mutations of the FoxO6 target site within the MTP promoter abrogated FoxO6-mediated induction of MTP promoter activity. Hepatic FoxO6 expression became deregulated in insulin-resistant mice with obesity and type 2 diabetes. FoxO6 inhibition in insulin-resistant liver suppressed hepatic MTP expression and curbed VLDL-TG overproduction, contributing to the amelioration of hypertriglyceridemia in obese and diabetic db/db mice. These results characterize FoxO6 as an important signaling molecule upstream of MTP for regulating hepatic VLDL-TG production.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Hipertrigliceridemia/metabolismo , Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/citologia , Humanos , Lipídeos/química , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , PPAR gama/metabolismo , Fosforilação , Regiões Promotoras Genéticas
12.
Cell Metab ; 18(6): 920-33, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24315375

RESUMO

Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including ß-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased ß-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2.


Assuntos
Lisina/análogos & derivados , Lisina/metabolismo , Mitocôndrias Hepáticas/enzimologia , Sirtuínas/metabolismo , Succinatos/metabolismo , Motivos de Aminoácidos , Animais , Carnitina/química , Carnitina/metabolismo , Linhagem Celular , Humanos , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Hidroximetilglutaril-CoA Sintase/química , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Corpos Cetônicos/biossíntese , Lisina/análise , Lisina/química , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Oxirredução , Sirtuínas/deficiência , Sirtuínas/genética , Succinatos/análise , Succinatos/química
13.
J Biol Chem ; 288(47): 33837-33847, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24121500

RESUMO

Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases.


Assuntos
Ácidos Graxos/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Mitocôndrias Hepáticas/enzimologia , Sirtuína 3/metabolismo , Acetilação , Acil-CoA Desidrogenase de Cadeia Longa , Animais , Domínio Catalítico/fisiologia , Ácidos Graxos/química , Ácidos Graxos/genética , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuína 3/química , Sirtuína 3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...