Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(28): 4162-4165, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36853596

RESUMO

A new organic superconductor (TEA)(HEDO-TTF-dc)2·2(H2C2O4) (H2EDO-TTF-dc = ethylenedioxy-tetrathiafulvalene dicarboxylic acids) with an onset TC of 4.0 K, was successfully obtained using oxalic acid and HEDO-TTF-dc anion donor. The crystal structure analysis indicated that strong π-π overlaps and very strong intra- and inter-molecular hydrogen-bonding interactions exist between the HEDO-TTF-dc anion donors and oxalic acid molecules.

2.
Sci Adv ; 8(51): eabn1680, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542712

RESUMO

Mutual interactions in many-body systems bring about various exotic phases, among which liquid-like states failing to order due to frustration are of keen interest. The organic system with an anisotropic triangular lattice of molecular dimers, κ-(ET)2Hg(SCN)2Br, has been suggested to host a dipole liquid arising from intradimer charge-imbalance instability, possibly offering an unprecedented stage for the spin degrees of freedom. Here, we show that an extraordinary unordered/unfrozen spin state having soft matter-like spatiotemporal characteristics emerges in this system. 1H nuclear magnetic resonance (NMR) spectra and magnetization measurements indicate that gigantic, staggered moments are nonlinearly and inhomogeneously induced by a magnetic field, whereas the moments vanish in the zero-field limit. The analysis of the NMR relaxation rate signifies that the moments fluctuate at a characteristic frequency slowing down to below megahertz at low temperatures. The inhomogeneity, local correlation, and slow dynamics indicative of middle-scale dynamical correlation length of several nanometers suggest novel frustration-driven spin clusterization.

3.
Phys Rev Lett ; 124(11): 117204, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242676

RESUMO

The behavior of interacting spins subject to randomness is a longstanding issue and the emergence of exotic quantum states is among intriguing theoretical predictions. We show how a quantum-disordered phase emerges from a classical antiferromagnet by controlled randomness. ^{1}H NMR of a successively x-ray-irradiated organic Mott insulator finds that the magnetic order collapses into a spin-glass-like state, immediately after a slight amount of disorder centers are created, and evolves to a gapless quantum-disordered state without spin freezing, spin gap, or critical slowing down, as reported by T. Furukawa et al. [Phys. Rev. Lett. 115, 077001 (2015)]PRLTAO0031-900710.1103/PhysRevLett.115.077001 through sequential reductions in the spin freezing temperature and moment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...