Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426901

RESUMO

We demonstrate a simple and compact variable magnetic field source based on the permanent cube magnet array approximating a Halbach cylinder. The large air gap area accommodates standard cryostat tails while providing a high uniformity and magnetic field stability of up to 0.5 T over regions of up to about a centimeter. It eliminates magnetic remanence effects and produces reproducible fields without the need for feedback. Thanks to the low cost and exceptional energy efficiency, it provides an accessible solution for modest magnetic field requirements in a wide range of research applications.

2.
J Phys Condens Matter ; 33(41)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662946

RESUMO

Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first roadmap on magnonics. This is a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives. Today, the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name a few. Hence, despite being a young research field, magnonics has come a long way since its early inception. This roadmap asserts a milestone for future emerging research directions in magnonics, and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.

3.
Rev Sci Instrum ; 89(8): 083904, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184633

RESUMO

The Hall effect and its varieties such as quantum, anomalous, and spin Hall effects provide indispensable tools for the characterization of electronic and magnetic properties of materials, metrology, and spintronics. The conventional four-probe Hall configuration is generally not amenable to measurements at nanoscale due to current shunting by the Hall electrodes. We demonstrate that Hall measurements on the nanoscale can be facilitated by the three-probe Hall configuration that avoids the shunting problem. We illustrate the efficiency of the proposed approach with anomalous Hall effect-based measurements of individual activation events during domain wall motion in magnetic films with perpendicular anisotropy.

4.
Nat Commun ; 8(1): 1579, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146963

RESUMO

Pure spin currents provide the possibility to control the magnetization state of conducting and insulating magnetic materials. They allow one to increase or reduce the density of magnons, and achieve coherent dynamic states of magnetization reminiscent of the Bose-Einstein condensation. However, until now there was no direct evidence that the state of the magnon gas subjected to spin current can be treated thermodynamically. Here, we show experimentally that the spin current generated by the spin-Hall effect drives the magnon gas into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation.

5.
Nat Commun ; 6: 8889, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567699

RESUMO

Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

6.
Phys Rev Lett ; 114(13): 137201, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25884135

RESUMO

We study the spectral characteristics of spin current nano-oscillators based on the Pt/[Co/Ni] magnetic multilayer with perpendicular magnetic anisotropy. By varying the applied magnetic field and current, both localized and propagating spin wave modes of the oscillation are achieved. At small fields, we observe an abrupt onset of the modulation sidebands. We use micromagnetic simulations to identify this state as a dynamical magnetic skyrmion stabilized in the active device region by spin current injection, whose current-induced dynamics is accompanied by the gyrotropic motion of the core due to the skew deflection. Our results demonstrate a practical route for controllable skyrmion manipulation by spin current in magnetic thin films.

7.
Sci Rep ; 5: 8578, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25716118

RESUMO

Nonlocal spin injection has been recognized as an efficient mechanism for creation of pure spin currents not tied to the electrical charge transfer. Here we demonstrate experimentally that it can induce coherent magnetization dynamics, which can be utilized for the implementation of novel microwave nano-sources for spintronic and magnonic applications. We show that such sources exhibit a small oscillation linewidth and are tunable over a wide frequency range by the static magnetic field. Spatially resolved measurements of the dynamical magnetization indicate a relatively large oscillation area, resulting in a high stability of the oscillation with respect to thermal fluctuations. We propose a simple quasilinear dynamical model that reproduces well the oscillation characteristics.

8.
Nat Nanotechnol ; 9(7): 509-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813697

RESUMO

Magnonics is based on signal transmission and processing by spin waves (or their quanta, called magnons) propagating in a magnetic medium. In the same way as nanoplasmonics makes use of metallic nanostructures to confine and guide optical-frequency plasmon-polaritons, nanomagnonics uses nanoscale magnetic waveguides to control the propagation of spin waves. Recent advances in the physics of nanomagnetism, such as the discovery of spin-transfer torque, have created possibilities for nanomagnonics. In particular, it was recently demonstrated that nanocontact spin-torque devices can radiate spin waves, serving as local nanoscale sources of signals for magnonic applications. However, the integration of spin-torque sources with nanoscale magnetic waveguides, which is necessary for the implementation of integrated spin-torque magnonic circuits, has not been achieved to date. Here, we suggest and experimentally demonstrate a new approach to this integration, utilizing dipolar field-induced magnonic nanowaveguides. The waveguides exhibit good spectral matching with spin-torque nano-oscillators and enable efficient directional transmission of spin waves. Our results provide a practical route for the implementation of integrated magnonic circuits utilizing spin transfer.

9.
Nat Commun ; 5: 3179, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24452278

RESUMO

Recently, a novel type of spin-torque nano-oscillators driven by pure spin current generated via the spin Hall effect was demonstrated. Here we report the study of the effects of external microwave signals on these oscillators. Our results show that they can be efficiently synchronized by applying a microwave signal at approximately twice the frequency of the auto-oscillation, which opens additional possibilities for the development of novel spintronic devices. We find that the synchronization exhibits a threshold determined by magnetic fluctuations pumped above their thermal level by the spin current, and is significantly influenced by the nonlinear self-localized nature of the auto-oscillatory mode.

10.
Phys Rev Lett ; 110(14): 147601, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167036

RESUMO

We utilized microwave spectroscopy to study the magnetization oscillations locally induced in a Permalloy film by a pure spin current, which is generated due to the spin Hall effect in an adjacent Pt layer. The oscillation frequency is lower than the ferromagnetic resonance of Permalloy, indicating that the oscillation forms a self-localized nonpropagating spin-wave soliton. At cryogenic temperatures, the spectral characteristics are remarkably similar to the traditional spin-torque nano-oscillators driven by spin-polarized currents. However, the linewidth of the oscillation increases exponentially with temperature and an additional peak appears in the spectrum below the ferromagnetic resonance, suggesting that the spectral characteristics are determined by interplay between two localized dynamical states.

11.
Phys Rev Lett ; 107(10): 107204, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21981525

RESUMO

We use microfocus Brillouin light scattering spectroscopy to study the interaction of spin current with magnetic fluctuations in a Permalloy microdisk located on top of a Pt strip carrying an electric current. We show that the fluctuations can be efficiently suppressed or enhanced by different directions of the electric current. Additionally, we find that the effect of spin current on magnetic fluctuations is strongly influenced by nonlinear magnon-magnon interactions. The observed phenomena can be used for controllable reduction of thermal noise in spintronic nanodevices.

12.
Phys Rev Lett ; 94(1): 017203, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698126

RESUMO

While magnetoresistance (MR) has generally been found to be symmetric in applied field in nonmagnetic or magnetic metals, we have observed antisymmetric MR in Co/Pt multilayers. Simultaneous domain imaging and transport measurements show that the antisymmetric MR is due to the appearance of domain walls that run perpendicular to both the magnetization and the current, a geometry existing only in materials with perpendicular magnetic anisotropy. As a result, the extraordinary Hall effect gives rise to circulating currents in the vicinity of the domain walls that contributes to the MR. The antisymmetric MR and extraordinary Hall effect have been quantitatively accounted for by a theoretical model.

13.
Phys Rev Lett ; 93(15): 157203, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15524934

RESUMO

By combining pairs of ferromagnetic metals with the same or different signs of scattering anisotropies in ferromagnetic-nonmagnetic-ferromagnetic metal nanopillars, we independently invert just the magnetoresistance, just the direction of current-induced magnetization switching, or both together, at room temperature (295 K) and at 4.2 K. In all cases studied, the switching direction is correctly predicted from the net scattering anisotropy of the fixed ferromagnet, including both bulk and interfacial contributions.

14.
Phys Rev Lett ; 91(14): 146803, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-14611545

RESUMO

We study current-driven magnetization switching in nanofabricated Ni(84)Fe(16)/Cu/Ni(84)Fe16 trilayers at 295 and 4.2 K. The shape of the hysteretic switching diagram at low magnetic field changes with temperature. The reversible behavior at higher fields involves two phenomena, a threshold current for magnetic excitations closely correlated with the switching current, and a peak in differential resistance characterized by telegraph noise, with an average period that decreases exponentially with current and shifts with temperature. We interpret both static and dynamic results at 295 and 4.2 K in terms of thermal activation over a potential barrier, with a current-dependent effective magnetic temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...