Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 28(9): 927-39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24993405

RESUMO

In many practical applications of structure-based virtual screening (VS) ligands are already known. This circumstance requires that the obtained hits need to satisfy initial made expectations i.e., they have to fulfill a predefined binding pattern and/or lie within a predefined physico-chemical property range. Based on the RApid Index-based Screening Engine (RAISE) approach, we introduce CRAISE-a user-controllable structure-based VS method. It efficiently realizes pharmacophore-guided protein-ligand docking to assess the library content but thereby concentrates only on molecules that have a chance to fulfill the given binding pattern. In order to focus only on hits satisfying given molecular properties, library profiles can be utilized to simultaneously filter compounds. CRAISE was evaluated on a range of strict to rather relaxed hypotheses with respect to its capability to guide binding-mode predictions and VS runs. The results reveal insights into a guided VS process. If a pharmacophore model is chosen appropriately, a binding mode below 2 Å is successfully reproduced for 85% of well-prepared structures, enrichment is increased up to median AUC of 73%, and the selectivity of the screening process is significantly enhanced leading up to seven times accelerated runtimes. In general, CRAISE supports a versatile structure-based VS approach allowing to assess hypotheses about putative ligands on a large scale.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Simulação de Acoplamento Molecular/métodos , Conjuntos de Dados como Assunto , Humanos , Ligantes , Estrutura Molecular , Ligação Proteica , Proteínas/metabolismo , Relação Estrutura-Atividade
2.
J Chem Inf Model ; 54(6): 1676-86, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24851945

RESUMO

Computational target prediction for bioactive compounds is a promising field in assessing off-target effects. Structure-based methods not only predict off-targets, but, simultaneously, binding modes, which are essential for understanding the mode of action and rationally designing selective compounds. Here, we highlight the current open challenges of computational target prediction methods based on protein structures and show why inverse screening rather than sequential pairwise protein-ligand docking methods are needed. A new inverse screening method based on triangle descriptors is introduced: iRAISE (inverse Rapid Index-based Screening Engine). A Scoring Cascade considering the reference ligand as well as the ligand and active site coverage is applied to overcome interprotein scoring noise of common protein-ligand scoring functions. Furthermore, a statistical evaluation of a score cutoff for each individual protein pocket is used. The ranking and binding mode prediction capabilities are evaluated on different datasets and compared to inverse docking and pharmacophore-based methods. On the Astex Diverse Set, iRAISE ranks more than 35% of the targets to the first position and predicts more than 80% of the binding modes with a root-mean-square deviation (RMSD) accuracy of <2.0 Å. With a median computing time of 5 s per protein, large amounts of protein structures can be screened rapidly. On a test set with 7915 protein structures and 117 query ligands, iRAISE predicts the first true positive in a ranked list among the top eight ranks (median), i.e., among 0.28% of the targets.


Assuntos
Desenho de Fármacos , Proteínas/química , Proteínas/metabolismo , Algoritmos , Sítios de Ligação , Bases de Dados de Proteínas , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Software
3.
J Cheminform ; 6: 12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24694216

RESUMO

The calculation of hydrogen positions is a common preprocessing step when working with crystal structures of protein-ligand complexes. An explicit description of hydrogen atoms is generally needed in order to analyze the binding mode of particular ligands or to calculate the associated binding energies. Due to the large number of degrees of freedom resulting from different chemical moieties and the high degree of mutual dependence this problem is anything but trivial. In addition to an efficient algorithm to take care of the complexity resulting from complicated hydrogen bonding networks, a robust chemical model is needed to describe effects such as tautomerism and ionization consistently. We present a novel method for the placement of hydrogen coordinates in protein-ligand complexes which takes tautomers and protonation states of both protein and ligand into account. Our method generates the most probable hydrogen positions on the basis of an optimal hydrogen bonding network using an empirical scoring function. The high quality of our results could be verified by comparison to the manually adjusted Astex diverse set and a remarkably low rate of undesirable hydrogen contacts compared to other tools.

4.
J Chem Inf Model ; 54(3): 756-66, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24533790

RESUMO

The consistent handling of molecules is probably the most basic and important requirement in the field of cheminformatics. Reliable results can only be obtained if the underlying calculations are independent of the specific way molecules are represented in the input data. However, ensuring consistency is a complex task with many pitfalls, an important one being the fact that the same molecule can be represented by different valence bond structures. In order to achieve reliability, a cheminformatics system needs to solve two fundamental problems. First, different choices of valence bond structures must be identified as the same molecule. Second, for each molecule all valence bond structures relevant to the context must be taken into consideration. The latter is especially important with regard to tautomers and protonation states, as these have considerable influence on physicochemical properties of molecules. We present a comprehensive method for the rapid and consistent generation of reasonable tautomers and protonation states for molecules relevant in the context of drug design. This method is based on a generic scheme, the Valence State Combination Model, which has been designed for the enumeration and scoring of valence bond structures in large data sets. In order to ensure our method's consistency, we have developed procedures which can serve as a general validation scheme for similar approaches. The analysis of both the average number of generated structures and the associated runtimes shows that our method is perfectly suited for typical cheminformatics applications. By comparison with frequently used and curated public data sets, we can demonstrate that the tautomers and protonation state produced by our method are chemically reasonable.


Assuntos
Preparações Farmacêuticas/química , Prótons , Bases de Dados de Produtos Farmacêuticos , Desenho de Fármacos , Modelos Químicos , Estereoisomerismo
5.
J Cheminform ; 5(1): 38, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23985157

RESUMO

: Working with small-molecule datasets is a routine task for cheminformaticians and chemists. The analysis and comparison of vendor catalogues and the compilation of promising candidates as starting points for screening campaigns are but a few very common applications. The workflows applied for this purpose usually consist of multiple basic cheminformatics tasks such as checking for duplicates or filtering by physico-chemical properties. Pipelining tools allow to create and change such workflows without much effort, but usually do not support interventions once the pipeline has been started. In many contexts, however, the best suited workflow is not known in advance, thus making it necessary to take the results of the previous steps into consideration before proceeding.To support intuition-driven processing of compound collections, we developed MONA, an interactive tool that has been designed to prepare and visualize large small-molecule datasets. Using an SQL database common cheminformatics tasks such as analysis and filtering can be performed interactively with various methods for visual support. Great care was taken in creating a simple, intuitive user interface which can be instantly used without any setup steps. MONA combines the interactivity of molecule database systems with the simplicity of pipelining tools, thus enabling the case-to-case application of chemistry expert knowledge. The current version is available free of charge for academic use and can be downloaded at http://www.zbh.uni-hamburg.de/mona.

6.
J Chem Inf Model ; 53(2): 411-22, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23390978

RESUMO

We present TrixP, a new index-based method for fast protein binding site comparison and function prediction. TrixP determines binding site similarities based on the comparison of descriptors that encode pharmacophoric and spatial features. Therefore, it adopts the efficient core components of TrixX, a structure-based virtual screening technology for large compound libraries. TrixP expands this technology by new components in order to allow a screening of protein libraries. TrixP accounts for the inherent flexibility of proteins employing a partial shape matching routine. After the identification of structures with matching pharmacophoric features and geometric shape, TrixP superimposes the binding sites and, finally, assesses their similarity according to the fit of pharmacophoric properties. TrixP is able to find analogies between closely and distantly related binding sites. Recovery rates of 81.8% for similar binding site pairs, assisted by rejecting rates of 99.5% for dissimilar pairs on a test data set containing 1331 pairs, confirm this ability. TrixP exclusively identifies members of the same protein family on top ranking positions out of a library consisting of 9802 binding sites. Furthermore, 30 predicted kinase binding sites can almost perfectly be classified into their known subfamilies.


Assuntos
Proteínas/química , Algoritmos , Animais , Sítios de Ligação , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/química
7.
J Chem Inf Model ; 53(1): 76-87, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23176552

RESUMO

The analysis of small molecule crystal structures is a common way to gather valuable information for drug development. The necessary structural data is usually provided in specific file formats containing only element identities and three-dimensional atomic coordinates as reliable chemical information. Consequently, the automated perception of molecular structures from atomic coordinates has become a standard task in cheminformatics. The molecules generated by such methods must be both chemically valid and reasonable to provide a reliable basis for subsequent calculations. This can be a difficult task since the provided coordinates may deviate from ideal molecular geometries due to experimental uncertainties or low resolution. Additionally, the quality of the input data often differs significantly thus making it difficult to distinguish between actual structural features and mere geometric distortions. We present a method for the generation of molecular structures from atomic coordinates based on the recently published NAOMI model. By making use of this consistent chemical description, our method is able to generate reliable results even with input data of low quality. Molecules from 363 Protein Data Bank (PDB) entries could be perceived with a success rate of 98%, a result which could not be achieved with previously described methods. The robustness of our approach has been assessed by processing all small molecules from the PDB and comparing them to reference structures. The complete data set can be processed in less than 3 min, thus showing that our approach is suitable for large scale applications.


Assuntos
Mineração de Dados/métodos , Bases de Dados de Proteínas , Informática/métodos , Ligantes , Reprodutibilidade dos Testes
8.
J Chem Inf Model ; 52(8): 2013-21, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22780427

RESUMO

The perception of a set of rings forms the basis for a number of chemoinformatics applications, e.g. the systematic naming of compounds, the calculation of molecular descriptors, the matching of SMARTS expressions, and the generation of atomic coordinates. We introduce the concept of unique ring families (URFs) as an extension of the concept of relevant cycles (RCs). URFs are consistent for different atom orders and represent an intuitive description of the rings of a molecular graph. Furthermore, in contrast to RCs, URFs are polynomial in number. We provide an algorithm to efficiently calculate URFs in polynomial time and demonstrate their suitability for real-time applications by providing computing time benchmarks for the PubChem Database. URFs combine three important properties of chemical ring descriptions, for the first time, namely being unique, chemically meaningful, and efficient to compute. Therefore, URFs are a valuable alternative to the commonly used concept of the smallest set of smallest rings (SSSR) and would be suited to become the standard measure for ring topologies of small molecules.


Assuntos
Desenho de Fármacos , Informática/métodos , Bases de Dados de Produtos Farmacêuticos
9.
J Chem Inf Model ; 51(12): 3199-207, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22067015

RESUMO

In most cheminformatics workflows, chemical information is stored in files which provide the necessary data for subsequent calculations. The correct interpretation of the file formats is an important prerequisite to obtain meaningful results. Consistent reading of molecules from files, however, is not an easy task. Each file format implicitly represents an underlying chemical model, which has to be taken into consideration when the input data is processed. Additionally, many data sources contain invalid molecules. These have to be identified and either corrected or discarded. We present the chemical file format converter NAOMI, which provides efficient procedures for reliable handling of molecules from the common chemical file formats SDF, MOL2, and SMILES. These procedures are based on a consistent chemical model which has been designed for the appropriate representation of molecules relevant in the context of drug discovery. NAOMI's functionality is tested by round robin file IO exercises with public data sets, which we believe should become a standard test for every cheminformatics tool.


Assuntos
Descoberta de Drogas/métodos , Software , Bases de Dados Factuais , Informática/métodos , Modelos Químicos , Estrutura Molecular
10.
J Chem Phys ; 129(2): 024304, 2008 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-18624530

RESUMO

In this work single and double ionization spectra of the homo- and heteronuclear argon/krypton dimers and trimers are calculated by means of propagator methods where a four-component implementation was employed for the single ionizations. Scalar relativistic effects play only a minor role for the outer valence spectral structure, whereas spin-orbit coupling and electron correlation have to be treated adequately in order to reproduce the features correctly. Nonradiative decay mechanisms of subvalence vacancies in the argon and krypton dimers and trimers are discussed both for the interatomic Coulombic decay and the electron transfer mediated decay (ETMD). In the heteronuclear triatomic system which serves as a model for larger clusters, a possible ETMD process of the Ar 3s vacancy is found for the linear arrangement of the atoms. In the bent configuration the ETMD channel is closed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA