Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Neurosci ; 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35477901

RESUMO

Abnormal fear and anxiety can manifest as psychiatric disorders. The bed nucleus of the stria terminalis (BNST) is implicated in sustained responding to, or anticipation of, an aversive event which can be expressed as anticipatory anxiety. The basolateral amygdala (BLA) is also active during anticipatory anxiety and sends projections to the BNST. However, little is known about the role for BLA neurons that project to BNST (BLA-BNST) in anticipatory anxiety in rodents. To address this, we tested if chemogenetic inactivation of the BLA-BNST pathway attenuates sustained conditioned responses produced by anticipation of an aversive stimulus. For comparison, we also assessed BLA-BNST inactivation during social interaction, which is sensitive to unlearned anxiety. We found that BLA-BNST inactivation reduced conditioned sustained freezing and increased social behaviors, but surprisingly, only in males. To determine if sex differences in BLA-BNST neuronal activity contribute to the differences in behavior, we used in vivo and ex vivo electrophysiological approaches. In males, BLA-BNST projection neurons were more active and excitable which coincided with a smaller after-hyperpolarization current (I AHP) compared to other BLA neurons; whereas in females, BLA-BNST neurons were less excitable and had larger I AHP compared to other BLA neurons. These findings demonstrate that activity of BLA-BNST neurons mediates conditioned anticipatory anxiety-like behavior in males. The lack of a role of BLA-BNST in females in this behavior, possibly due to low excitability of these neurons, also highlights the need for caution when generalizing the role of specific neurocircuits in fear and anxiety. Significance Statement :Anxiety disorders disproportionately affect women. This hints towards sex differences within anxiety neurocircuitry, yet most of our understanding is derived from male rodents. Furthermore, debilitating anticipation of adverse events is among the most severe anxiety symptoms, but little is known about anticipatory anxiety neurocircuitry. Here we demonstrated that BLA-BNST activity is required for anticipatory anxiety to a prolonged aversive cue, but only in males. Moreover, BLA-BNST neurons are hypoactive and less excitable in females. These results uncover BLA-BNST as a key component of anticipatory anxiety circuitry, and cellular differences may explain the sex-dependent role of this circuit. Uncovering this disparity provides evidence that the assumed basic circuitry of an anxiety behavior might not readily transpose from males to females.

2.
Curr Protoc ; 1(10): e267, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34670009

RESUMO

Organotypic slice cultures (OTCs) have been employed in the laboratory since the early 1980s and have proved to be useful for the study of a number of neural systems. Our recent work focuses on the development of behavioral stress resilience induced by repeated daily injections of neuropeptide Y into the basolateral amygdala (BLA). Resilience develops over weeks, persisting to 8 weeks. To unravel the cellular mechanisms underlying neuropeptide Y-induced stress resilience we developed in vitro OTCs of the BLA. Here, we provide an optimized protocol that consistently yields viable and healthy OTCs containing the BLA and surrounding tissue using the interface method, prepared with slices taken from postnatal (P) day 14 rats. We explain key points to optimizing tissue viability and discuss mitigation or avoidance of pitfalls that can arise to aid in successful implementation of this technique. We show that principal neurons in BLA OTCs (8 weeks in vitro = equivalent postnatal day 70) develop into networks that are electrophysiologically very similar to those from acute slices obtained from older rats (P70) and respond to pharmacological treatments in a comparable way. Furthermore, we highlight how these cultures be used to further understand the molecular, cellular, and circuit-level neuropathophysiological changes underlying stress disorders. BLA OTCs provide long-term physiological and pharmacological results whose predictions were borne out in vivo, supporting the validity of the BLA OTC as a model to unravel BLA neurocircuitry. Recent preliminary results also support the successful application of this approach to preparing long-lived OTCs of BLA and neocortex from mice. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Organotypic slice culture Support Protocol 1: Changing medium Support Protocol 2: Drug incubations Basic Protocol 2: Excision of OTC slices from inserts Support Protocol 3: Fixation of slices.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Neocórtex , Animais , Camundongos , Neurônios , Neuropeptídeo Y , Ratos , Ratos Sprague-Dawley
3.
J Neurosci ; 40(16): 3231-3249, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32144180

RESUMO

Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA.SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons.


Assuntos
Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Hormônio Liberador da Corticotropina/farmacologia , Dendritos/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Receptores de Neuropeptídeo Y/agonistas , Comportamento Social , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/metabolismo , Masculino , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeo Y/metabolismo , Resiliência Psicológica
4.
Brain Behav Immun ; 84: 180-199, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31785394

RESUMO

A link exists between immune function and psychiatric conditions, particularly depressive and anxiety disorders. Psychological stress is a powerful trigger for these disorders and stress influences immune state. However, the nature of peripheral immune changes after stress conflicts across studies, perhaps due to the focus on few measures of pro-inflammatory or anti-inflammatory processes. The basolateral amygdala (BLA) is critical for emotion, and plays an important role in the effects of stress on anxiety. As such, it may be a primary central nervous system (CNS) mediator for the effects of peripheral immune changes on anxiety after stress. Therefore, this study aimed to delineate the influence of stress on peripheral pro-inflammatory and anti-inflammatory aspects, BLA immune activation, and its impact on BLA neuronal activity. To produce a more encompassing view of peripheral immune changes, this study used a less restrictive approach to categorize and group peripheral immune changes. We found that repeated social defeat stress in adult male Sprague-Dawley rats increased the frequencies of mature T-cells positive for intracellular type 2-like cytokine and serum pro-inflammatory cytokines. Principal component analysis and hierarchical clustering was used to guide grouping of T-cells and cytokines, producing unique profiles. Stress shifted the balance towards a specific set that included mostly type 2-like T-cells and pro-inflammatory cytokines. Within the CNS component, repeated stress caused an increase of activated microglia in the BLA, increased anxiety-like behaviors across several assays, and increased BLA neuronal firing in vivo that was prevented by blockade of microglia activation. Because repeated stress can trigger anxiety states by actions in the BLA, and altered immune function can trigger anxiety, these results suggest that repeated stress may trigger anxiety-like behaviors by inducing a pro-inflammatory state in the periphery and the BLA. These results begin to uncover how stress may recruit the immune system to alter the function of brain regions critical to emotion.


Assuntos
Tonsila do Cerebelo , Ansiedade , Estresse Psicológico , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/etiologia , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Estresse Psicológico/complicações
5.
Sci Rep ; 9(1): 12292, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444385

RESUMO

Stress is a precipitating factor in depression and anxiety disorders. Patients with these disorders often show amygdala abnormalities. The basolateral amygdala (BLA) is integral in mood and emotion, and is sensitive to stress. While much is known about effects of stress on BLA neuron activity and morphology in males, less is known in females. We tested whether repeated stress exerts distinct effects on BLA in vivo neuronal activity and morphology of Golgi-stained BLA neurons [lateral (LAT) and basal (BA) nuclei] in adult female rats. Repeated restraint stress increased BLA neuronal firing and caused hypertrophy of BLA neurons in males, while it decreased LAT and BA neuronal firing and caused hypotrophy of neurons in the LAT of females. BLA neuronal activity and function, such as fear conditioning, shifts across the estrous cycle. Repeated stress disrupted this pattern of BLA activity and fear expression over the estrous cycle. The disruptive effects of stress on the pattern of BLA function across estrous may produce behavior that is non-optimal for a specific phase of the estrous cycle. The contrasting effects of stress may contribute to sex differences in the effects of stress on mood and psychiatric disorders.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Comportamento Animal/fisiologia , Ciclo Estral/fisiologia , Medo , Neurônios/patologia , Estresse Psicológico/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Condicionamento Clássico , Espinhas Dendríticas/metabolismo , Sistema Endócrino/metabolismo , Extinção Psicológica , Feminino , Complexo de Golgi/metabolismo , Masculino , Ratos Sprague-Dawley
6.
J Neurosci ; 39(25): 4909-4930, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30971438

RESUMO

Although NPY has potent anxiolytic actions within the BLA, selective activation of BLA NPY Y2 receptors (Y2Rs) acutely increases anxiety by an unknown mechanism. Using ex vivo male rat brain slice electrophysiology, we show that the selective Y2R agonist, [ahx5-24]NPY, reduced the frequency of GABAA-mediated mIPSCs in BLA principal neurons (PNs). [ahx5-24]NPY also reduced tonic activation of GABAB receptors (GABABR), which increased PN excitability through inhibition of a tonic, inwardly rectifying potassium current (KIR ). Surprisingly, Y2R-sensitive GABABR currents were action potential-independent, persisting after treatment with TTX. Additionally, the Ca2+-dependent, slow afterhyperpolarizing K+ current (IsAHP ) was enhanced in approximately half of the Y2R-sensitive PNs, possibly from enhanced Ca2+ influx, permitted by reduced GABABR tone. In male and female mice expressing tdTomato in Y2R-mRNA cells (tdT-Y2R mice), immunohistochemistry revealed that BLA somatostatin interneurons express Y2Rs, as do a significant subset of BLA PNs. In tdT-Y2R mice, [ahx5-24]NPY increased excitability and suppressed the KIR in nearly all BLA PNs independent of tdT-Y2R fluorescence, consistent with presynaptic Y2Rs on somatostatin interneurons mediating the above effects. However, only tdT-Y2R-expressing PNs responded to [ahx5-24]NPY with an enhancement of the IsAHP Ultimately, increased PN excitability via acute Y2R activation likely correlates with enhanced BLA output, consistent with reported Y2R-mediated anxiogenesis. Furthermore, we demonstrate the following: (1) a novel mechanism whereby activity-independent GABA release can powerfully dampen BLA neuronal excitability via postsynaptic GABABRs; and (2) that this tonic inhibition can be interrupted by neuromodulation, here by NPY via Y2Rs.SIGNIFICANCE STATEMENT Within the BLA, NPY is potently anxiolytic. However, selective activation of NPY2 receptors (Y2Rs) increases anxiety by an unknown mechanism. We show that activation of BLA Y2Rs decreases tonic GABA release onto BLA principal neurons, probably from Y2R-expressing somatostatin interneurons, some of which coexpress NPY. This increases principal neuron excitability by reducing GABAB receptor (GABABR)-mediated activation of G-protein-coupled, inwardly rectifying K+ currents. Tonic, Y2R-sensitive GABABR currents unexpectedly persisted in the absence of action potential firing, revealing, to our knowledge, the first report of substantial, activity-independent GABABR activation. Ultimately, we provide a plausible explanation for Y2R-mediated anxiogenesis in vivo and describe a novel and modulatable means of damping neuronal excitability.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Neuropeptídeo Y/agonistas , Animais , Feminino , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
7.
J Neurosci ; 38(19): 4505-4520, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29650696

RESUMO

Neuropeptide Y (NPY) expression is tightly linked with the development of stress resilience in rodents and humans. Local NPY injections targeting the basolateral amygdala (BLA) produce long-term behavioral stress resilience in male rats via an unknown mechanism. Previously, we showed that activation of NPY Y1 receptors hyperpolarizes BLA principal neurons (PNs) through inhibition of the hyperpolarization-activated, depolarizing H-current, Ih The present studies tested whether NPY treatment induces stress resilience by modulating Ih NPY (10 pmol) was delivered daily for 5 d bilaterally into the BLA to induce resilience; thereafter, the electrophysiological properties of PNs and the expression of Ih in the BLA were characterized. As reported previously, increases in social interaction (SI) times persisted weeks after completion of NPY administration. In vitro intracellular recordings showed that repeated intra-BLA NPY injections resulted in hyperpolarization of BLA PNs at 2 weeks (2W) and 4 weeks (4W) after NPY treatment. At 2W, spontaneous IPSC frequencies were increased, whereas at 4W, resting Ih was markedly reduced and accompanied by decreased levels of HCN1 mRNA and protein expression in BLA. Knock-down of HCN1 channels in the BLA with targeted delivery of lentivirus containing HCN1-shRNA increased SI beginning 2W after injection and induced stress resilience. NPY treatment induced sequential, complementary changes in the inputs to BLA PNs and their postsynaptic properties that reduce excitability, a mechanism that contributes to less anxious behavior. Furthermore, HCN1 knock-down mimicked the increases in SI and stress resilience observed with NPY, indicating the importance of Ih in stress-related behavior.SIGNIFICANCE STATEMENT Resilience improves mental health outcomes in response to adverse situations. Neuropeptide Y (NPY) is associated with decreased stress responses and the expression of resilience in rodents and humans. Single or repeated injections of NPY into the basolateral amygdala (BLA) buffer negative behavioral effects of stress and induce resilience in rats, respectively. Here, we demonstrate that repeated administration of NPY into the BLA unfolds several cellular mechanisms that decrease the activity of pyramidal output neurons. One key mechanism is a reduction in levels of the excitatory ion channel HCN1. Moreover, shRNA knock-down of HCN1 expression in BLA recapitulates some of the actions of NPY and causes potent resilience to stress, indicating that this channel may be a possible target for therapy.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Canais de Potássio/efeitos dos fármacos , Resiliência Psicológica/efeitos dos fármacos , Tonsila do Cerebelo/citologia , Animais , Ansiedade/genética , Ansiedade/psicologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Relações Interpessoais , Masculino , Microinjeções , Neuropeptídeo Y/administração & dosagem , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
8.
J Neurosci ; 37(44): 10567-10586, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954870

RESUMO

Depression and anxiety are diagnosed almost twice as often in women, and the symptomology differs in men and women and is sensitive to sex hormones. The basolateral amygdala (BLA) contributes to emotion-related behaviors that differ between males and females and across the reproductive cycle. This hints at sex- or estrus-dependent features of BLA function, about which very little is known. The purpose of this study was to test whether there are sex differences or estrous cyclicity in rat BLA physiology and to determine their mechanistic correlates. We found substantial sex differences in the activity of neurons in lateral nuclei (LAT) and basal nuclei (BA) of the BLA that were associated with greater excitatory synaptic input in females. We also found strong differences in the activity of LAT and BA neurons across the estrous cycle. These differences were associated with a shift in the inhibition-excitation balance such that LAT had relatively greater inhibition during proestrus which paralleled more rapid cued fear extinction. In contrast, BA had relatively greater inhibition during diestrus that paralleled more rapid contextual fear extinction. These results are the first to demonstrate sex differences in BLA neuronal activity and the impact of estrous cyclicity on these measures. The shift between LAT and BA predominance across the estrous cycle provides a simple construct for understanding the effects of the estrous cycle on BLA-dependent behaviors. These results provide a novel framework to understand the cyclicity of emotional memory and highlight the importance of considering ovarian cycle when studying the BLA of females.SIGNIFICANCE STATEMENT There are differences in emotional responses and many psychiatric symptoms between males and females. This may point to sex differences in limbic brain regions. Here we demonstrate sex differences in neuronal activity in one key limbic region, the basolateral amygdala (BLA), whose activity fluctuates across the estrous cycle due to a shift in the balance of inhibition and excitation across two BLA regions, the lateral and basal nuclei. By uncovering this push-pull shift between lateral and basal nuclei, these results help to explain disparate findings about the effects of biological sex and estrous cyclicity on emotion and provide a framework for understanding fluctuations in emotional memory and psychiatric symptoms.


Assuntos
Potenciais de Ação/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Estro/fisiologia , Caracteres Sexuais , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Neurotrauma ; 34(7): 1351-1363, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27762651

RESUMO

Repeat concussions (RC) can result in significant long-term neurological consequences and increased risk for neurodegenerative disease compared with single concussion (SC). Mechanisms underlying this difference are poorly understood and best elucidated using an animal model. To the best of our knowledge, there is no closed-head model in the adult rat using a commercially available device. We developed a novel and clinically relevant closed-head injury (CHI) model of both SC and RC in the adult rat using a controlled cortical impact (CCI) device. Adult rats received either a single or repeat CHI (three injuries, 48 h apart), and acute deficits in sensorimotor and locomotor function (foot fault; open field), memory (novel object), and anxiety (open field; corticosterone [CORT]) were measured. Assessment of cellular pathology was also conducted. Within the first week post-CHI, rats with SC or RC showed similar deficits in motor coordination, decreased locomotion, and higher resting CORT levels. Rats with an SC had memory deficits post-injury day (PID) 3 that recovered to sham levels by PID 7; however, rats with RC continued to show memory deficits. No obvious gross pathology was observed on the cortical surface or in coronal sections. Further examination showed thinning of the cortex and corpus callosum in RC animals compared with shams and increased axonal pathology in the corpus callosum of both SC and RC animals. Our data present a model of CHI that results in clinically relevant markers of concussion and an early differentiation between SC and RC.


Assuntos
Concussão Encefálica/fisiopatologia , Córtex Cerebral/patologia , Disfunção Cognitiva/fisiopatologia , Corpo Caloso/patologia , Modelos Animais de Doenças , Transtornos da Memória/fisiopatologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Comportamento Animal/fisiologia , Concussão Encefálica/complicações , Concussão Encefálica/etiologia , Concussão Encefálica/patologia , Disfunção Cognitiva/etiologia , Masculino , Transtornos da Memória/etiologia , Ratos , Ratos Long-Evans
10.
J Comp Neurol ; 524(12): 2418-39, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26779765

RESUMO

Within the basolateral amygdaloid complex (BLA), neuropeptide Y (NPY) buffers against protracted anxiety and fear. Although the importance of NPY's actions in the BLA is well documented, little is known about the source(s) of NPY fibers to this region. The current studies identified sources of NPY projections to the BLA by using a combination of anatomical and neurochemical approaches. NPY innervation of the BLA was assessed in rats by examining the degree of NPY coexpression within interneurons or catecholaminergic fibers with somatostatin and tyrosine hydroxylase (TH) or dopamine ß-hydroxylase (DßH), respectively. Numerous NPY(+) /somatostatin(+) and NPY(+) /somatostatin(-) fibers were observed, suggesting at least two populations of NPY fibers within the BLA. No colocalization was noted between NPY and TH or DßH immunoreactivities. Additionally, Fluorogold (FG) retrograde tracing with immunohistochemistry was used to identify the precise origin of NPY projections to the BLA. FG(+) /NPY(+) cells were identified within the amygdalostriatal transition area (AStr) and stria terminalis and scattered throughout the bed nucleus of the stria terminalis. The subpopulation of NPY neurons in the AStr also coexpressed somatostatin. Subjecting animals to a conditioned fear paradigm increased NPY gene expression within the AStr, whereas no changes were observed within the BLA or stria terminalis. Overall, these studies identified limbic regions associated with stress circuits providing NPY input to the BLA and demonstrated that a unique NPY projection from the AStr may participate in the regulation of conditioned fear. J. Comp. Neurol. 524:2418-2439, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Rede Nervosa/metabolismo , Neuropeptídeo Y/biossíntese , Animais , Complexo Nuclear Basolateral da Amígdala/química , Corpo Estriado/química , Corpo Estriado/metabolismo , Medo/psicologia , Masculino , Rede Nervosa/química , Neuropeptídeo Y/análise , Ratos , Ratos Sprague-Dawley
11.
Endocrinology ; 157(2): 820-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26653570

RESUMO

The neuropeptide kisspeptin (Kiss1) is integral to the advent of puberty and the generation of cyclical LH surges. Although many complex actions of Kiss1 are known, the mechanisms governing the processing/regulation of this peptide have not been unveiled. The metallo enzyme, endopeptidase 24.15 (thimet oligopeptidase), has been demonstrated to play a key role in the processing and thus the duration of action of the reproductive neuropeptide, GnRH, which signals downstream of Kiss1. Initial in silico modeling implied that Kiss1 could also be a putative substrate for EP24.15. Coincubation of Kiss1 and EP24.15 demonstrated multiple cleavages of the peptide predominantly between Arg29-Gly30 and Ser47-Phe48 (corresponding to Ser5-Phe6 in Kiss-10; Kiss-10 as a substrate had an additional cleavage between Phe6-Gly7) as determined by mass spectrometry. Vmax for the reaction was 2.37±0.09 pmol/min · ng with a Km of 19.68 ± 2.53µM, which is comparable with other known substrates of EP24.15. EP24.15 immunoreactivity, as previously demonstrated, is distributed in cell bodies, nuclei, and processes throughout the hypothalamus. Kiss1 immunoreactivity is localized primarily to cell bodies and fibers within the mediobasal and anteroventral-periventricular hypothalamus. Double-label immunohistochemistry indicated coexpression of EP24.15 and Kiss1, implicating that the regulation of Kiss1 by EP24.15 could occur in vivo. Further studies will be directed at determining the precise temporal sequence of EP24.15 effects on Kiss1 as it relates to the control of reproductive hormone secretion and treatment of fertility issues.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/enzimologia , Kisspeptinas/metabolismo , Metaloendopeptidases/metabolismo , Animais , Simulação por Computador , Escherichia coli , Feminino , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Metestro/metabolismo , Proestro/metabolismo , Ratos
12.
Compr Physiol ; 5(3): 1281-323, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26140719

RESUMO

Interaction between the autonomic nervous system and the neuroendocrine system is critical for maintenance of homeostasis in a wide variety of physiological parameters such as body temperature, fluid and electrolyte balance, and blood pressure and volume. The anatomical and physiological mechanisms underlying integration of the neuroendocrine and autonomic mechanisms responsible for eliciting integrated autonomic and neuroendocrine actions are the focus of this article. This includes a focus on the hypothalamic paraventricular nucleus, because it includes both neuroendocrine neurons and preganglionic autonomic neurons that regulate sympathetic and parasympathetic outflow. The "wired" and "nonwired" mechanisms within PVN that facilitate communication between these neuronal populations are described. The impact of peripheral hormones, specifically the adrenal and gonadal steroids, on the neuroendocrine and autonomic systems is discussed, and exercise is used as a specific example of a physiological challenge/stress that requires precise integration of neuroendocrine and autonomic responses to maintain cardiovascular, fluid, and energy homeostasis.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Animais , Sistema Nervoso Autônomo/metabolismo , Homeostase , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
13.
Endocrinology ; 156(3): 1111-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25545386

RESUMO

Hypothalamic kisspeptin (Kiss1) neurons express estrogen receptor α (ERα) and exert control over GnRH/LH secretion in female rodents. It has been proposed that estradiol (E2) activation of ERα in kisspeptin neurons in the arcuate nucleus (ARC) suppresses GnRH/LH secretion (negative feedback), whereas E2 activation of ERα in kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) mediates the release of preovulatory GnRH/LH surges (positive feedback). To test these hypotheses, we generated mice bearing kisspeptin cell-specific deletion of ERα (KERαKO) and treated them with E2 regimens that evoke either negative or positive feedback actions on GnRH/LH secretion. Using negative feedback regimens, as expected, E2 effectively suppressed LH levels in ovariectomized (OVX) wild-type (WT) mice to the levels seen in ovary-intact mice. Surprisingly, however, despite the fact that E2 regulation of Kiss1 mRNA expression was abrogated in both the ARC and AVPV of KERαKO mice, E2 also effectively decreased LH levels in OVX KERαKO mice to the levels seen in ovary-intact mice. Conversely, using a positive feedback regimen, E2 stimulated LH surges in WT mice, but had no effect in KERαKO mice. These experiments clearly demonstrate that ERα in kisspeptin neurons is required for the positive, but not negative feedback actions of E2 on GnRH/LH secretion in adult female mice. It remains to be determined whether the failure of KERαKO mice to exhibit GnRH/LH surges reflects the role of ERα in the development of kisspeptin neurons, in the active signaling processes leading to the release of GnRH/LH surges, or both.


Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Retroalimentação Fisiológica/fisiologia , Kisspeptinas/metabolismo , Animais , Estradiol/genética , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Hibridização In Situ , Kisspeptinas/genética , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Neuropeptides ; 47(4): 273-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23688647

RESUMO

Enhanced corticotropin releasing factor (CRF) release in the basolateral amygdala (BLA) is strongly associated with the generation of behavioral stress responses through activation of the CRF-R1 receptor subtype. Stress and anxiety-like behavior are modulated in part by the balance of peptide actions such as excitatory CRF and inhibitory neuropeptide Y (NPY) receptor activation in the BLA. While the actions of CRF are clear, little is known about the cell type influenced by CRF receptor stimulation. These studies were designed to identify the cell types within the BLA activated by intra-BLA administration of CRF using multi-label immunohistochemistry for cFos and markers for pyramidal (CaMKII-immunopositive) and interneuronal [glutamic acid decarboxylase (GAD65)] cell populations. Administration of CRF into the BLA produced a dose-dependent increase in the expression of cFos-ir. Intra-BLA injection of CRF induced significant increases in cFos-ir in the CaMKII-ir population. Although increases in cFos-ir in GAD65-ir cells were observed, this did not reach statistical significance perhaps in part due to the decreased numbers of GAD65-ir cells within the BLA after CRF treatment. These findings demonstrate that CRF, when released into the BLA, activates projection neurons and that the activity of GABAergic interneurons is also altered by CRF treatment. Decreases in the number of GAD65-ir neurons could reflect either increased or decreased activity of these cells and future studies will more directly address these possibilities. The expression of cFos is associated with longer term regulation of gene expression which may be involved in the profound long term effects of neuropeptides, such as CRF, on the activity and plasticity of BLA pyramidal neurons.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Hormônio Liberador da Corticotropina/farmacologia , Neurônios/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
15.
J Neurosci ; 33(3): 1130-42, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325250

RESUMO

Brain-derived neurotrophic factor (BDNF) contributes to diverse types of plasticity, including cocaine addiction. We investigated the role of BDNF in the rat nucleus accumbens (NAc) in the incubation of cocaine craving over 3 months of withdrawal from extended access cocaine self-administration. First, we confirmed by immunoblotting that BDNF levels are elevated after this cocaine regimen on withdrawal day 45 (WD45) and showed that BDNF mRNA levels are not altered. Next, we explored the time course of elevated BDNF expression using immunohistochemistry. Elevation of BDNF in the NAc core was detected on WD45 and further increased on WD90, whereas elevation in shell was not detected until WD90. Surface expression of activated tropomyosin receptor kinase B (TrkB) was also enhanced on WD90. Next, we used viral vectors to attenuate BDNF-TrkB signaling. Virus injection into the NAc core enhanced cue-induced cocaine seeking on WD1 compared with controls, whereas no effect was observed on WD30 or WD90. Attenuating BDNF-TrkB signaling in shell did not affect cocaine seeking on WD1 or WD45 but significantly decreased cocaine seeking on WD90. These results suggest that basal levels of BDNF transmission in the NAc core exert a suppressive effect on cocaine seeking in early withdrawal (WD1), whereas the late elevation of BDNF protein in NAc shell contributes to incubation in late withdrawal (WD90). Finally, BDNF protein levels in the NAc were significantly increased after ampakine treatment, supporting the novel hypothesis that the gradual increase of BDNF levels in NAc accompanying incubation could be caused by increased AMPAR transmission during withdrawal.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Núcleo Accumbens/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Cocaína/efeitos adversos , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Masculino , Núcleo Accumbens/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Autoadministração
16.
J Chem Neuroanat ; 45(1-2): 50-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22884996

RESUMO

Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/ultraestrutura , Calcineurina/biossíntese , Neurônios/metabolismo , Neurônios/ultraestrutura , Receptores de Neuropeptídeo Y/biossíntese , Animais , Calcineurina/análise , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Neuropeptídeo Y/análise , Transdução de Sinais/fisiologia
17.
J Neurosci ; 30(50): 16970-82, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21159967

RESUMO

Stress and anxiety-related behaviors controlled by the basolateral amygdala (BLA) are regulated in vivo by neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF): NPY produces anxiolytic effects, whereas CRF produces anxiogenic effects. These opposing actions are likely mediated via regulation of excitatory output from the BLA to afferent targets. In these studies, we examined mechanisms underlying the effects of NPY and CRF in the BLA using whole-cell patch-clamp electrophysiology in rat brain slices. NPY, even with tetrodotoxin present, caused a dose-dependent membrane hyperpolarization in BLA pyramidal neurons. The hyperpolarization resulted in the inhibition of pyramidal cells, despite arising from a reduction in a voltage-dependent membrane conductance. The Y(1) receptor agonist, F(7)P(34) NPY, produced a similar membrane hyperpolarization, whereas the Y(1) antagonist, BIBO3304 [(R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N(2)-(diphenylacetyl)-argininamide trifluoroacetate], blocked the effect of NPY. The NPY-inhibited current was identified as I(h), which is active at and hyperpolarized to rest. Responses to NPY were occluded by either Cs(+) or ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride), but unaffected by the G(IRK)-preferring blockers Ba(2+) and SCH23390 [(R)-(+)-7-chloro-8-hydroxy-3-methyl-l-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride]. Application of CRF, with or without TTX present, depolarized NPY-sensitive BLA pyramidal neurons, resulting from an increase in I(h). Electrophysiological and immunocytochemical data were consistent with a major role for the HCN1 subunit. Our results indicate that NPY, via Y(1) receptors, directly inhibits BLA pyramidal neurons by suppressing a postsynaptic I(h), whereas CRF enhances resting I(h), causing an increased excitability of BLA pyramidal neurons. The opposing actions of these two peptides on the excitability of BLA output cells are consistent with the observed behavioral actions of NPY and CRF in the BLA.


Assuntos
Tonsila do Cerebelo/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Potenciais da Membrana/fisiologia , Neuropeptídeo Y/fisiologia , Estresse Psicológico/psicologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Bário/farmacologia , Benzazepinas/farmacologia , Césio/farmacologia , Hormônio Liberador da Corticotropina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Interações Medicamentosas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Células Piramidais/fisiologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/fisiologia , Tetrodotoxina/farmacologia
18.
J Comp Neurol ; 517(2): 166-76, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19731317

RESUMO

Activation of neuropeptide Y (NPY) Y1 receptors (Y1r) in the rat basolateral nuclear complex of the amygdala (BLA) produces anxiolysis and interferes with the generation of conditioned fear. NPY is important in regulating the output of the BLA, yet the cell types involved in mediating this response are currently unknown. The current studies employed multiple label immunocytochemistry to determine the distribution of Y1r-immunoreactivity (-ir) in glutamatergic pyramidal and GABAergic cell populations in the BLA using scanning laser confocal stereology. Pyramidal neurons were identified by expression of calcium-calmodulin dependent kinase II (CaMKII-ir) and functionally distinct interneuron subpopulations were distinguished by peptide (cholecystokinin, somatostatin) or calcium-binding protein (parvalbumin, calretinin) content. Throughout the BLA, Y1r-ir was predominately on soma with negligible fiber staining. The high degree of coexpression of Y1r-ir (99.9%) in CaMKII-ir cells suggests that these receptors colocalize on pyramidal cells and that NPY could influence BLA output by directly regulating the activity of these projection neurons. Additionally, Y1r-ir was also colocalized with the interneuronal markers studied. Parvalbumin-ir interneurons, which participate in feedforward inhibition of BLA pyramidal cells, represented the largest number of Y1r expressing interneurons in the BLA ( approximately 4% of the total neuronal population). The anatomical localization of NPY receptors on different cell populations within the BLA provides a testable circuit whereby NPY could modulate the activity of the BLA via actions on both projection cells and interneuronal cell populations.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Calbindina 2 , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Colecistocinina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal/métodos , Neurônios/classificação , Neuropeptídeo Y/metabolismo , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/deficiência , Receptores de Neuropeptídeos/deficiência , Proteína G de Ligação ao Cálcio S100/metabolismo , Somatostatina/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
J Neurosci ; 28(4): 893-903, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18216197

RESUMO

Resilience to mental and physical stress is a key determinant for the survival and functioning of mammals. Although the importance of stress resilience has been recognized, the underlying neural mediators have not yet been identified. Neuropeptide Y (NPY) is a peptide known for its anti-anxiety-like effects mediated via the amygdala. The results of our current study demonstrate, for the first time that repeated administration of NPY directly into the basolateral nucleus of the amygdala (BLA) produces selective stress-resilient behavioral responses to an acute restraint challenge as measured in the social interaction test, but has no effect on hypothalamic-adrenal-pituitary axis activity or stress-induced hyperthermia. More importantly, the resilient behaviors observed in the NPY-treated animals were present for up to 8 weeks. Antagonizing the activity of calcineurin, a protein phosphatase involved in neuronal remodeling and present in NPY receptor containing neurons within the BLA, blocked the development of long-term, but not the acute increases in social interaction responses induced by NPY administration. This suggests that the NPY-induced long-term behavioral resilience to restraint stress may occur via mechanisms involving neuronal plasticity. These studies suggest one putative physiologic mechanism underlying stress resilience and could identify novel targets for development of therapies that can augment the ability to cope with stress.


Assuntos
Febre/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiologia , Neuropeptídeo Y/administração & dosagem , Sistema Hipófise-Suprarrenal/fisiologia , Comportamento Social , Estresse Psicológico/prevenção & controle , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Febre/tratamento farmacológico , Febre/psicologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Ratos Wistar , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Tempo
20.
Endocrinology ; 148(8): 3666-73, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17463058

RESUMO

The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Ansiolíticos/farmacologia , Arginina/análogos & derivados , Arginina/farmacologia , Biomarcadores/metabolismo , Proteína de Ligação a CREB/metabolismo , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Neuropeptídeo Y/análogos & derivados , Neuropeptídeo Y/farmacologia , Núcleo Hipotalâmico Paraventricular/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeo Y/agonistas , Terceiro Ventrículo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...