RESUMO
BACKGROUND: Human syncytiotrophoblast mitochondria require the activity of the isocitrate dehydrogenase type 2 (IDH2) to obtain reduced coenzymes for progesterone (P4) synthesis. Data from the literature indicate that mitochondrial steroidogenic contact sites transform efficiently cholesterol into P4. In this research, we identified the IDH2 as a member of the steroidogenic contact site and analyzed the steroidogenic role of its activity. METHOD: Human syncytiotrophoblast mitochondria were isolated by differential centrifugation, and steroidogenic contact sites were obtained by osmotic shock and sucrose gradient ultracentrifugation. In-gel native activity assay, mass spectroscopy, and western blot were used to identify the association of proteins and their activities. P4 was determined by immunofluorescence. RESULTS: The IDH2 was mainly identified in steroidogenic contact sites, and its activity was associated with a complex of proteins with an apparent molecular mass of ~590â¯kDa. Mass spectroscopy showed many groups of proteins with several metabolic functions, including steroidogenesis and ATP synthesis. The IDH2 activity was coupled to P4 synthesis since in the presence of Ca2+ or Na2SeO3, inhibitors of the IDH2, the P4 production decreased. CONCLUSIONS: The human syncytiotrophoblast mitochondria build contact sites for steroidogenesis. The IDH2, a non-membrane protein, supplies the NADPH required for the synthesis of P4 in a complex (steroidosome) that associate the proteins required to transform efficiently cholesterol into P4, which is necessary in pregnancy to maintain the relationship between mother and fetus. GENERAL SIGNIFICANCE: The IDH2 is proposed as a check point in the regulation of placental steroidogenesis.