Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(7): 11234-11243, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35796589

RESUMO

The increasing population and industrial development are responsible for environmental pollution. Among toxic chemicals, polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic contaminants resulting from the incomplete combustion of organic materials. Two-dimensional materials, such as transition metal dichalcogenides (TMDCs), are ideal sensory scaffolds, combining high surface-to-volume ratio with physical and chemical properties that are strongly susceptible to environmental changes. TMDCs can be integrated in field-effect transistors (FETs), which can operate as high-performance chemical detectors of (non)covalent interaction with small molecules. Here, we have developed MoS2-based FETs as platforms for PAHs sensing, relying on the affinity of the planar polyaromatic molecules for the basal plane of MoS2 and the structural defects in its lattice. X-ray photoelectron spectroscopy analysis, photoluminescence measurements, and transfer characteristics showed a notable reduction in the defectiveness of MoS2 and a p-type doping upon exposure to PAHs solutions, with a magnitude determined by the correlation between the ionization energies (EI) of the PAH and that of MoS2. Naphthalene, endowed with the higher EI among the studied PAHs, exhibited the highest output. We observed a log-log correlation between MoS2 doping and naphthalene concentration in water in a wide range (10-9-10-6 M), as well as a reversible response to the analyte. Naphthalene concentrations as low as 0.128 ppb were detected, being below the limits imposed by health regulations for drinking water. Furthermore, our MoS2 devices can reversibly detect vapors of naphthalene with both an electrical and optical readout, confirming that our architecture could operate as a dual sensing platform.

2.
Nanoscale ; 13(46): 19682-19689, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34817489

RESUMO

The contamination of water with heavy metal ions represents a harsh environmental problem resulting from societal development. Among various hazardous compounds, mercury ions (Hg2+) surely belong to the most poisonous ones. Their accumulation in the human body results in health deterioration, affecting vital organs and eventually leading to chronic diseases, and, in the worst-case scenario, early death. High selectivity and sensitivity for the analyte of choice can be achieved in chemical sensing using suitable active materials capable of interacting at the supramolecular level with the chosen species. Among them, 2D transition metal dichalcogenides (TMDCs) have attracted great attention as sensory materials because of their unique physical and chemical properties, which are highly susceptible to environmental changes. In this work, we have fabricated MoS2-based field-effect transistors (FETs) and exploited them as platforms for Hg2+ sensing, relying on the affinity of heavy metal ions for both point defects in TMDCs and sulphur atoms in the MoS2 lattice. X-ray photoelectron spectroscopy characterization showed both a significant reduction of the defectiveness of MoS2 when exposed to Hg2+ with increasing concentration and a shift in the binding energy of 0.2 eV suggesting p-type doping of the 2D semiconductor. The efficient defect healing has been confirmed also by low-temperature photoluminescence measurements by monitoring the attenuation of defect-related bands after Hg2+ exposure. Transfer characteristics in MoS2 FETs provided further evidence that Hg2+ acts as a p-dopant of MoS2. Interestingly, we observed a strict correlation of doping with the concentration of Hg2+, following a semi-log trend. Hg2+ concentrations as low as 1 pM can be detected, being way below the limits imposed by health regulations. Electrical characterization also revealed that our sensor can be efficiently washed and used multiple times. Moreover, the developed devices displayed a markedly high selectivity for Hg2+ against other metal ions as ruled by soft/soft interaction among chemical systems with appropriate redox potentials, being a generally applicable approach to develop chemical sensing devices combining high sensitivity, selectivity and reversibility, to meet technological needs.

3.
Nanotechnology ; 32(24)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33508809

RESUMO

The interaction of graphene with metal oxides is essential for understanding and controlling new devices' fabrication based on these materials. The growth of metal oxides on graphene/substrate systems constitutes a challenging task due to the graphene surface's hydrophobic nature. In general, different pre-treatments should be performed before deposition to ensure a homogenous growth depending on the deposition technique, the metal oxide, and the surface's specific nature. Among these factors, the initial state and interaction of graphene with its substrate is the most important. Therefore, it is imperative to study the initial local state of graphene and relate it to the early stages of metal oxides' growth characteristics. Taking as initial samples graphene grown by chemical vapor deposition on polycrystalline Cu sheets and then exposed to ambient conditions, this article presents a local study of the inhomogeneities of this air-exposed graphene and how they influence on the subsequent ZnO growth. Firstly, by spatially correlating Raman and x-ray photoemission spectroscopies at the micro and nanoscales, it is shown how chemical species present in air intercalate inhomogeneously between Graphene and Cu. The reason for this is precisely the polycrystalline nature of the Cu support. Moreover, these local inhomogeneities also affect the oxidation level of the uppermost layer of Cu and, consequently, the electronic coupling between graphene and the metallic substrate. In second place, through the same characterization techniques, it is shown how the initial state of graphene/Cu sheets influences the local inhomogeneities of the ZnO deposit during the early stages of growth in terms of both, stoichiometry and morphology. Finally, as a proof of concept, it is shown how altering the initial chemical state and interaction of Graphene with Cu can be used to control the properties of the ZnO deposits.

4.
ACS Omega ; 4(14): 15824-15828, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592149

RESUMO

Heterostructure devices consisting of graphene and colloidal quantum dots (QDs) have been remarkably successful as photodetectors and have opened the door to technological applications based on the combination of these low-dimensional materials. This work explores the photodetection properties of a heterostructure consisting of a graphene field effect transistor covered by a film of silica-encapsulated colloidal QDs. Defects at the surface of the silica shell trap optically excited charge carriers, which simultaneously enables photodetection via two mechanisms: photogating, resulting in a net p-doping of the device, and Coulombic scattering of charge carriers in the graphene, producing an overall decrease in the current magnitude.

5.
Nanoscale ; 11(23): 11152-11158, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31144696

RESUMO

Mechanically exfoliated van der Waals materials can be used to prepare proof-of-concept electronic devices. Their optoelectronic properties strongly depend on the geometry and number of layers present in the exfoliated flake. Once the device fabrication steps have been completed, tuning the device response is complex, since the geometry and number of layers cannot be easily modified. In this work, we employ Pulsed Focused Electron Beam Induced Etching (PFEBIE) to tailor the geometry and electronic properties of field effect transistors based on mechanically exfoliated Molybdenum Disulfide (MoS2) flakes. First, MoS2 field effect transistors are fabricated via optical lithography and conventional methods. Then, the geometry of the MoS2 source-drain conduction channel is modified employing a Xenon difluoride (XeF2) gas injection nozzle combined with a pulsed electron beam pattern-generation system. Electrical characterization of devices carried out before and after the nanopatterning step via PFEBIE reveals a shift in the doping from N-type towards P-type. We attribute this change to sulfur vacancies induced during the direct nanopatterning step. This is confirmed by micro-Raman and micro-Photoluminescence spectroscopy experiments. The direct nanopatterning method allows us to fine-tune the geometry and thus the electronic properties of the devices, once the conventional fabrication steps have been completed. The success rate of our tailoring method exceeds 85% when tuning the geometry of the flake into a 250 nm wide and straight conduction channel between source and drain.

6.
ACS Appl Mater Interfaces ; 10(8): 6805-6809, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29436818

RESUMO

This work explores the assembly of large-area heterostructures comprised of a film of silica-encapsulated, semiconducting colloidal quantum dots, deposited via the Langmuir-Blodgett method, sandwiched between two graphene sheets. The luminescent, electrically insulating film served as a dielectric, with the top graphene sheet patterned into an electrode and successfully used as a top gate for an underlying graphene field-effect transistor. This heterostructure paves the way for developing novel hybrid optoelectronic devices through the integration of 2D and 0D materials.

7.
Nanotechnology ; 29(2): 025603, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29160237

RESUMO

This work investigates the growth of B-C-N layers by chemical vapor deposition using methylamine borane (MeAB) as the single-source precursor. MeAB has been synthesized and characterized, paying particular attention to the analysis of its thermolysis products, which are the gaseous precursors for B-C-N growth. Samples have been grown on Cu foils and transferred onto different substrates for their morphological, structural, chemical, electronic and optical characterizations. The results of these characterizations indicate a segregation of h-BN and graphene-like (Gr) domains. However, there is an important presence of B and N interactions with C at the Gr borders, and of C interacting at the h-BN-edges, respectively, in the obtained nano-layers. In particular, there is a significant presence of C-N bonds, at Gr/h-BN borders and in the form of N doping of Gr domains. The overall B:C:N contents in the layers is close to 1:3:1.5. A careful analysis of the optical bandgap determination of the obtained B-C-N layers is presented, discussed and compared with previous seminal works with samples of similar composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...