Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(17): e0046721, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132590

RESUMO

Legionella pneumophila is a ubiquitous freshwater pathogen and the causative agent of Legionnaires' disease. L. pneumophila growth within protists provides a refuge from desiccation, disinfection, and other remediation strategies. One outstanding question has been whether this protection extends to phages. L. pneumophila isolates are remarkably devoid of prophages and to date no Legionella phages have been identified. Nevertheless, many L. pneumophila isolates maintain active CRISPR-Cas defenses. So far, the only known target of these systems is an episomal element that we previously named Legionella mobile element 1 (LME-1). The continued expansion of publicly available genomic data promises to further our understanding of the role of these systems. We now describe over 150 CRISPR-Cas systems across 600 isolates to establish the clearest picture yet of L. pneumophila's adaptive defenses. By searching for targets of 1,500 unique CRISPR-Cas spacers, LME-1 remains the only identified CRISPR-Cas targeted integrative element. We identified 3 additional LME-1 variants-all targeted by previously and newly identified CRISPR-Cas spacers-but no other similar elements. Notably, we also identified several spacers with significant sequence similarity to microviruses, specifically those within the subfamily Gokushovirinae. These spacers are found across several different CRISPR-Cas arrays isolated from geographically diverse isolates, indicating recurrent encounters with these phages. Our analysis of the extended Legionella CRISPR-Cas spacer catalog leads to two main conclusions: current data argue against CRISPR-Cas targeted integrative elements beyond LME-1, and the heretofore unknown L. pneumophila phages are most likely lytic gokushoviruses. IMPORTANCE Legionnaires' disease is an often-fatal pneumonia caused by Legionella pneumophila, which normally grows inside amoebae and other freshwater protists. L. pneumophila trades diminished access to nutrients for the protection and isolation provided by the host. One outstanding question is whether L. pneumophila is susceptible to phages, given the protection provided by its intracellular lifestyle. In this work, we use Legionella CRISPR spacer sequences as a record of phage infection to predict that the "missing" L. pneumophila phages belong to the microvirus subfamily Gokushovirinae. Gokushoviruses are known to infect another intracellular pathogen, Chlamydia. How do gokushoviruses access L. pneumophila (and Chlamydia) inside their "cozy niches"? Does exposure to phages happen during a transient extracellular period (during cell-to-cell spread) or is it indicative of a more complicated environmental lifestyle? One thing is clear, 100 years after their discovery, phages continue to hold important secrets about the bacteria upon which they prey.


Assuntos
Bacteriófagos/isolamento & purificação , Legionella pneumophila/virologia , Microviridae/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/genética , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Humanos , Legionella pneumophila/genética , Doença dos Legionários/microbiologia , Microviridae/classificação , Microviridae/genética , Filogenia
2.
Angew Chem Int Ed Engl ; 60(9): 4782-4788, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33188548

RESUMO

Legionella pneumophila is a deadly bacterial pathogen that has caused numerous Legionnaires' disease outbreaks, where cooling towers were the most common source of exposure. Bacterial culturing is used for L. pneumophila detection, but this method takes approximately 10 days to complete. In this work, an RNA-cleaving fluorogenic DNAzyme, named LP1, was isolated. Extensive characterization revealed that LP1 is reactive with multiple infectious isolates of L. pneumophila but inactive with 25 other common bacterial species. LP1 is likely activated by a protein target, capable of generating a detectable signal in the presence of as few as 10 colony-forming units of L. pneumophila, and able to maintain its activity in cooling tower water from diverse sources. Given that similar DNAzymes have been incorporated into many sensitive assays for bacterial detection, LP1 holds the potential for the development of biosensors for monitoring the contamination of L. pneumophila in exposure sources.


Assuntos
DNA Catalítico/metabolismo , Legionella pneumophila/genética , RNA/metabolismo , Técnicas Biossensoriais , DNA Catalítico/química , DNA Catalítico/isolamento & purificação , Cinética , Conformação de Ácido Nucleico , Clivagem do RNA , Microbiologia da Água
3.
Cell Rep ; 23(2): 568-583, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642013

RESUMO

Legionella pneumophila translocates the largest known arsenal of over 330 pathogenic factors, called "effectors," into host cells during infection, enabling L. pneumophila to establish a replicative niche inside diverse amebas and human macrophages. Here, we reveal that the L. pneumophila effectors MavC (Lpg2147) and MvcA (Lpg2148) are structural homologs of cycle inhibiting factor (Cif) effectors and that the adjacent gene, lpg2149, produces a protein that directly inhibits their activity. In contrast to canonical Cifs, both MavC and MvcA contain an insertion domain and deamidate the residue Gln40 of ubiquitin but not Gln40 of NEDD8. MavC and MvcA are functionally diverse, with only MavC interacting with the human E2-conjugating enzyme UBE2N (Ubc13). MavC deamidates the UBE2N∼Ub conjugate, disrupting Lys63 ubiquitination and dampening NF-κB signaling. Combined, our data reveal a molecular mechanism of host manipulation by pathogenic bacteria and highlight the complex regulatory mechanisms integral to L. pneumophila's pathogenic strategy.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/metabolismo , Proteína NEDD8/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
4.
Mol Syst Biol ; 12(12): 893, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27986836

RESUMO

Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/patogenicidade , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Legionella pneumophila/metabolismo , Modelos Biológicos , Mapas de Interação de Proteínas , Biologia de Sistemas/métodos
5.
Structure ; 23(8): 1459-1469, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26146184

RESUMO

LubX is part of the large arsenal of effectors in Legionella pneumophila that are translocated into the host cytosol during infection. Despite such unique features as the presence of two U-box motifs and its targeting of another effector SidH, the molecular basis of LubX activity remains poorly understood. Here we show that the N terminus of LubX is able to activate an extended number of ubiquitin-conjugating (E2) enzymes including UBE2W, UBEL6, and all tested members of UBE2D and UBE2E families. Crystal structures of LubX alone and in complex with UBE2D2 revealed drastic molecular diversification between the two U-box domains, with only the N-terminal U-box retaining E2 recognition features typical for its eukaryotic counterparts. Extensive mutagenesis followed by functional screening in a yeast model system captured functionally important LubX residues including Arg121, critical for interactions with SidH. Combined, these data provide a new molecular insight into the function of this unique pathogenic factor.


Assuntos
Proteínas de Bactérias/química , Legionella pneumophila/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Fatores de Virulência/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Legionella pneumophila/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Termodinâmica , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Science ; 344(6180): 208-11, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24723613

RESUMO

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Assuntos
Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Medicamentos/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Haploinsuficiência , Humanos , Farmacogenética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
7.
J Clin Invest ; 123(1): 315-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202731

RESUMO

Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML.


Assuntos
Membranas Intracelulares/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Lisossomos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Membranas Intracelulares/patologia , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/genética , Lisossomos/fisiologia , Masculino , Mefloquina/farmacocinética , Mefloquina/farmacologia , Camundongos , Células-Tronco Neoplásicas/patologia , Permeabilidade/efeitos dos fármacos , Saccharomyces cerevisiae/genética
8.
Genome Biol ; 13(11): R105, 2012 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-23158586

RESUMO

Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Antipsicóticos/farmacologia , Teorema de Bayes , Chlamydomonas reinhardtii/fisiologia , Aptidão Genética , Modelos Biológicos , Fenótipo
9.
Genome Biol ; 13(9): R80, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23021432

RESUMO

BACKGROUND: Because protonation affects the properties of almost all molecules in cells, cytosolic pH (pH(c)) is usually assumed to be constant. In the model organism yeast, however, pH(c) changes in response to the presence of nutrients and varies during growth. Since small changes in pH(c) can lead to major changes in metabolism, signal transduction, and phenotype, we decided to analyze pH(c) control. RESULTS: Introducing a pH-sensitive reporter protein into the yeast deletion collection allowed quantitative genome-wide analysis of pH(c) in live, growing yeast cultures. pH(c) is robust towards gene deletion; no single gene mutation led to a pH(c) of more than 0.3 units lower than that of wild type. Correct pH(c) control required not only vacuolar proton pumps, but also strongly relied on mitochondrial function. Additionally, we identified a striking relationship between pH(c) and growth rate. Careful dissection of cause and consequence revealed that pH(c) quantitatively controls growth rate. Detailed analysis of the genetic basis of this control revealed that the adequate signaling of pH(c) depended on inositol polyphosphates, a set of relatively unknown signaling molecules with exquisitely pH sensitive properties. CONCLUSIONS: While pH(c) is a very dynamic parameter in the normal life of yeast, genetically it is a tightly controlled cellular parameter. The coupling of pH(c) to growth rate is even more robust to genetic alteration. Changes in pH(c) control cell division rate in yeast, possibly as a signal. Such a signaling role of pH(c) is probable, and may be central in development and tumorigenesis.


Assuntos
Divisão Celular , Genoma Fúngico , Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Concentração de Íons de Hidrogênio , Fosfatos de Inositol/metabolismo , Mitocôndrias/metabolismo , Mutação , Bombas de Próton/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transdução de Sinais , Vacúolos/metabolismo
10.
Chem Biol ; 18(10): 1273-83, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035796

RESUMO

Preselection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in Saccharomyces cerevisiae and identified ~7500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. These data were used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes, we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7500 growth-inhibitory molecules have been made commercially available and the computational model and filter used are provided.


Assuntos
Inibidores Enzimáticos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Teorema de Bayes , Benzofuranos/química , Benzofuranos/metabolismo , Benzofuranos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos Dessaturases/antagonistas & inibidores , Ácidos Graxos Dessaturases/metabolismo , Células HeLa , Humanos , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/metabolismo , Modelos Biológicos , Fenótipo , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacologia , Saccharomyces cerevisiae/química , Estearoil-CoA Dessaturase
11.
Nat Chem Biol ; 7(12): 891-3, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22057127

RESUMO

The DAF-9 cytochrome P450 is a key regulator of dauer formation, developmental timing and longevity in the nematode Caenorhabditis elegans. Here we describe the first identified chemical inhibitor of DAF-9 and the first reported small-molecule tool that robustly induces dauer formation in typical culture conditions. This molecule (called dafadine) also inhibits the mammalian ortholog of DAF-9(CYP27A1), suggesting that dafadine can be used to interrogate developmental control and longevity in other animals.


Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Isoxazóis/farmacologia , Longevidade/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Isoxazóis/química , Larva/efeitos dos fármacos , Estrutura Molecular , Piperidinas/química , Piridinas/química , Estereoisomerismo , Relação Estrutura-Atividade
12.
PLoS Genet ; 7(10): e1002332, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028670

RESUMO

Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors.


Assuntos
Anticarcinógenos/metabolismo , Cantaridina/metabolismo , Metabolismo dos Lipídeos/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Actinas/metabolismo , Animais , Anticarcinógenos/farmacologia , Cantaridina/análogos & derivados , Cantaridina/farmacologia , Parede Celular/genética , Parede Celular/metabolismo , Besouros/química , Citoesqueleto/metabolismo , Glicerofosfolipídeos/metabolismo , Homeostase/genética , Redes e Vias Metabólicas , Metilação , Mutagênese Sítio-Dirigida , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/metabolismo , Estresse Fisiológico/genética , Biologia de Sistemas/métodos
13.
J Vis Exp ; (54)2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21860376

RESUMO

By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000-1,000,000 gene-gene and drug-gene interactions in a single experiment.


Assuntos
Candida albicans/genética , Código de Barras de DNA Taxonômico/métodos , DNA Fúngico/genética , Genômica/métodos , DNA Fúngico/análise , Técnicas de Inativação de Genes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos
14.
Methods Mol Biol ; 759: 239-69, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21863492

RESUMO

The automated cell, compound and environment screening system (ACCESS) was developed as an automated platform for chemogenomic research. In the yeast Saccharomyces cerevisiae, a number of genomic screens rely on the modulation of gene dose to determine the mode of action of bioactive compounds or the effects of environmental/compound perturbations. These and other phenotypic experiments have been shown to benefit from high-resolution growth curves and a highly automated controlled environment system that enables a wide range of multi-well assays that can be run over many days without any manual intervention. Furthermore, precise control of drug dosing, timing of drug exposure, and precise timing of cell harvesting at specific generation times are important for optimal results. Some of these benefits include the ability to derive fine distinctions between growth rates of mutant strains (1) and the discovery of novel compounds and drug targets (2). The automation has also enabled large-scale screening projects with over 100,000 unique compounds screened to date including a thousand genome-wide screens (3). The ACCESS system also has a diverse set of software tools to enable users to set up, run, annotate, and evaluate complex screens with minimal training.


Assuntos
Meio Ambiente , Genômica/métodos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Automação , Gráficos por Computador , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Genômica/instrumentação , Laboratórios , Robótica , Saccharomyces cerevisiae/efeitos dos fármacos , Software , Estatística como Assunto , Interface Usuário-Computador
15.
FEBS Lett ; 582(10): 1419-24, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18387365

RESUMO

Little is known about the quality control of proteins upon integration in the inner membrane of Escherichia coli. Here, we demonstrate that YidC and FtsH are adjacent to a nascent, truncated membrane protein using in vitro photo cross-linking. YidC plays a critical but poorly understood role in the biogenesis of E. coli inner membrane proteins (IMPs). FtsH functions as a membrane chaperone and protease. Furthermore, we show that FtsH and its modulator proteins HflK and HflC copurify with tagged YidC and, vice versa, that YidC copurifies with tagged FtsH. These results suggest that FtsH and YidC have a linked role in the quality control of IMPs.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Proteases Dependentes de ATP/química , Proteases Dependentes de ATP/isolamento & purificação , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/isolamento & purificação , Peptídeos/química , Peptídeos/isolamento & purificação
16.
J Biol Chem ; 278(7): 4654-9, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12466262

RESUMO

Hemoglobin protease (Hbp) is a hemoglobin-degrading protein that is secreted by a human pathogenic Escherichia coli strain via the autotransporter mechanism. Little is known about the earliest steps in autotransporter secretion, i.e. the targeting to and translocation across the inner membrane. Here, we present evidence that Hbp interacts with the signal recognition particle (SRP) and the Sec-translocon early during biogenesis. Furthermore, Hbp requires a functional SRP targeting pathway and Sec-translocon for optimal translocation across the inner membrane. SecB is not required for targeting of Hbp but can compensate to some extent for the lack of SRP. Hbp is synthesized with an unusually long signal peptide that is remarkably conserved among a subset of autotransporters. We propose that these autotransporters preferentially use the co-translational SRP/Sec route to avoid adverse effects of the exposure of their mature domains in the cytoplasm.


Assuntos
Proteínas de Bactérias , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Endopeptidases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Transporte Proteico/genética , Canais de Translocação SEC , Proteínas SecA , Partícula de Reconhecimento de Sinal/genética , Transdução de Sinais/genética
17.
J Biol Chem ; 277(39): 35880-6, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12107184

RESUMO

YidC has been identified recently as an evolutionary conserved factor that is involved in the integration of inner membrane proteins (IMPs) in Escherichia coli. The discovery of YidC has inspired the reevaluation of membrane protein assembly pathways in E. coli. In this study, we have analyzed the role of YidC in membrane integration of a widely used model IMP, leader peptidase (Lep). Site-directed photocross-linking experiments demonstrate that both YidC and SecY contact nascent Lep very early during biogenesis, at only 50-amino acid nascent chain length. At this length the first transmembrane domain (TM), which acquires a type I topology, is not even fully exposed outside the ribosome. The pattern of interactions appears dependent on the position of the cross-linking probe in the nascent chain. Upon elongation, nascent Lep remains close to YidC and comes into contact with lipids as well. Our results suggest a role for YidC in both the reception and lipid partitioning of type I TMs.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana , Proteínas de Membrana Transportadoras , Reagentes de Ligações Cruzadas/farmacologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Luz , Metabolismo dos Lipídeos , Modelos Biológicos , Fosfolipases A/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Canais de Translocação SEC , Serina Endopeptidases/metabolismo , Transcrição Gênica , Raios Ultravioleta
18.
J Biol Chem ; 277(15): 12718-23, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11821429

RESUMO

YidC was recently shown to play an important role in the assembly of inner membrane proteins (IMPs) both in conjunction with and separate from the Sec-translocon. Little is known about the biogenesis and structural and functional properties of YidC, itself a polytopic IMP. Here we analyze the targeting and membrane integration of YidC using in vivo and in vitro approaches. The combined data indicate that YidC is targeted by the signal recognition particle and inserts at the SecAYEG-YidC translocon early during biogenesis, unlike its mitochondrial homologue Oxa1p. In addition, YidC is shown to be relatively abundant compared with other components involved in IMP assembly and is predominantly localized at the poles of the cell.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Canais de Translocação SEC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...