Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Educ ; 101(5): 2039-2044, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764938

RESUMO

The following laboratory procedure provides students with hands-on experience in nanomaterial chemistry and characterization. This three-day protocol is easy to follow for undergraduates with basic chemistry or materials science backgrounds and is suitable for inclusion in upper-division courses in inorganic chemistry or materials science. Students use air-free chemistry procedures to synthesize and separate iron oxide magnetic nanoparticles and subsequently modify the nanoparticle surface by using a chemical stripping agent. The morphology and chemical composition of the nanoparticles are characterized using electron microscopy and dynamic light scattering measurements. Additionally, magnetic characterization of the particles is performed using an inexpensive open-source (3D-printed) magnetophotometer. Possible modifications to the synthesis procedure, including the incorporation of dopants to modify the magnetic response and alternative characterization techniques, are discussed. The three-day synthesis, purification, and characterization laboratory will prepare students with crucial skills for advanced technology industries such as semiconductor manufacturing, nanomedicine, and green chemistry.

2.
ACS Appl Mater Interfaces ; 13(43): 51436-51446, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677936

RESUMO

The mechanical properties of π-conjugated (semiconducting) polymers are a key determinant of the stability and manufacturability of devices envisioned for applications in energy and healthcare. These properties─including modulus, extensibility, toughness, and strength─are influenced by the morphology of the solid film, which depends on the method of processing. To date, the majority of work done on the mechanical properties of semiconducting polymers has been performed on films deposited by spin coating, a process not amenable to the manufacturing of large-area films. Here, we compare the mechanical properties of thin films of regioregular poly(3-heptylthiophene) (P3HpT) produced by three scalable deposition processes─interfacial spreading, solution shearing, and spray coating─and spin coating (as a reference). Our results lead to four principal conclusions. (1) Spray-coated films have poor mechanical robustness due to defects and inhomogeneous thickness. (2) Sheared films show the highest modulus, strength, and toughness, likely resulting from a decrease in free volume. (3) Interfacially spread films show a lower modulus but greater fracture strain than spin-coated films. (4) The trends observed in the tensile behavior of films cast using different deposition processes held true for both P3HpT and poly(3-butylthiophene) (P3BT), an analogue with a higher glass transition temperature. Grazing incidence X-ray diffraction and ultraviolet-visible spectroscopy reveal many notable differences in the solid structures of P3HpT films generated by all four processes. While these morphological differences provide possible explanations for differences in the electronic properties (hole mobility), we find that the mechanical properties of the film are dominated by the free volume and surface topography. In field-effect transistors, spread films had mobilities more than 1 magnitude greater than any other films, likely due to a relatively high proportion of edge-on texturing and long coherence length in the crystalline domains. Overall, spread films offer the best combination of deformability and charge-transport properties.

3.
Nanoscale ; 12(20): 11209-11221, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32409812

RESUMO

The purpose of this work is to clarify the mechanism of piezoresistance in a class of ultra-sensitive strain gauges based on metallic films on 2D substrates ("2D/M" films). The metals used are gold or palladium deposited as ultrathin films (≤16 nm). These films transition from a regime of subcontiguous growth to a percolated morphology with increasing nominal thickness. The 2D substrates are either single-layer graphene or hexagonal boron nitride (hBN). By using either a conductor (graphene) or an insulator (hBN), it is possible to de-couple the relative contributions of the metal and the 2D substrate from the overall piezoresistance of the composite structure. Here, we use a combination of measurements including electron microscopy, automated image analysis, temperature-dependent conductivity, and measurements of gauge factor of the films as they are bent over a 1 µm step edge (0.0001% or 1 ppm). Our observations are enumerated as follows: (1) of the four permutations of metal and 2D substrate, all combinations except hBN/Au are able to resolve 1 ppm strain (considered extraordinary for strain gauges) at some threshold thickness of metal; (2) for non-contiguous (i.e., unpercolated) films of metal on hBN, changes in resistance for these small step strains cannot be detected; (3) for percolated films on hBN, changes in resistance upon strain can be resolved only for palladium and not for gold; (4) graphene does not exhibit detectable changes in resistance when subjected to step strains of either 1 or 10 ppm, but does so upon the deposition of any amount of gold or palladium, even for nominal thicknesses below the threshold for percolation. Our observations reveal unexpected complexity in the properties of these simple composite materials, and ways in which these materials might be combined to exhibit even greater sensitivity.

4.
ACS Appl Nano Mater ; 2(4): 2222-2229, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33829151

RESUMO

Wearable mechanical sensors have the potential to transform healthcare by enabling patient monitoring outside of the clinic. A critical challenge in the development of mechanical-e.g., strain-sensors is the combination of sensitivity, dynamic range, and robustness. This work describes a highly sensitive and robust wearable strain sensor composed of three layered materials: graphene, an ultrathin film of palladium, and highly plasticized PEDOT:PSS. The role of the graphene is to provide a conductive, manipulable substrate for the deposition of palladium. When deposited at low nominal thicknesses (~8 nm) palladium forms a rough, granular film which is highly piezoresistive (i.e., the resistance increases with strain with high sensitivity). The dynamic range of these graphene/palladium films, however, is poor, and can only be extended to ~10% before failure. This fragility renders the films incompatible with wearable applications on stretchable substrates. To improve the working range of graphene/palladium strain sensors, a layer of highly plasticized PEDOT:PSS is used as a stretchable conductive binder. That is, the conductive polymer provides an alternative pathway for electrical conduction upon cracking of the palladium film and the graphene. The result was a strain sensor that possessed good sensitivity at low strains (0.001% engineering strain) but with a working range up to 86%. The piezoresistive performance can be optimized in a wearable device by sandwiching the conductive composite between a soft PDMS layer in contact with the skin and a harder layer at the air interface. When attached to the skin of the torso, the patch-like strain sensors were capable of detecting heartbeat (small strain) and respiration (large strain) simultaneously. This demonstration highlights the ability of the sensor to measure low and high strains in a single interpolated signal, which could be useful in monitoring, for example, obstructive sleep apnea with an unobtrusive device.

5.
ACS Omega ; 2(2): 626-630, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28261691

RESUMO

This article describes the design of piezoresistive thin-film sensors based on single-layer graphene decorated with metallic nanoislands. The defining characteristic of these composite thin films is that they can be engineered to exhibit a temperature coefficient of resistance (TCR) that is close to zero. A mechanical sensor with this property is stable against temperature fluctuations of the type encountered during operations in the real world, for example, in a wearable sensor. The metallic nanoislands are grown on graphene through thermal deposition of metals (gold or palladium) at a low nominal thickness. Metallic films exhibit an increase in resistance with temperature (positive TCR), whereas graphene exhibits a decrease in resistance with temperature (negative TCR). By varying the amount of deposition, the morphology of the nanoislands can be tuned such that the TCRs of a metal and graphene cancel out. The quantitative analysis of scanning electron microscope images reveals the importance of the surface coverage of the metal (as opposed to the total mass of the metal deposited). The stability of the sensor to temperature fluctuations that might be encountered in the outdoors is demonstrated by subjecting a wearable pulse sensor to simulated solar irradiation.

6.
Nanoscale ; 9(3): 1292-1298, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28055038

RESUMO

Thin-film optical strain sensors have the ability to map small deformations with spatial and temporal resolution and do not require electrical interrogation. This paper describes the use of graphene decorated with metallic nanoislands for sensing of tensile deformations of less than 0.04% with a resolution of less than 0.002%. The nanoisland-graphene composite films contain gaps between the nanoislands, which when functionalized with benzenethiolate behave as hot spots for surface-enhanced Raman scattering (SERS). Mechanical strain increases the sizes of the gaps; this increase attenuates the electric field, and thus attenuates the SERS signal. This compounded, SERS-enhanced "piezoplasmonic" effect can be quantified using a plasmonic gauge factor, and is among the most sensitive mechanical sensors of any type. Since the graphene-nanoisland films are both conductive and optically active, they permit simultaneous electrical stimulation of myoblast cells and optical detection of the strains produced by the cellular contractions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA