Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960608

RESUMO

Fishing has provided mankind with a protein-rich source of food and labor, allowing for the development of an important industry, which has led to the overexploitation of most targeted fish species. The sustainable management of these natural resources requires effective control of fish landings and, therefore, an accurate calculation of fishing quotas. This work proposes a deep learning-based spatial-spectral method to classify five pelagic species of interest for the Chilean fishing industry, including the targeted Engraulis ringens, Merluccius gayi, and Strangomera bentincki and non-targeted Normanichthtys crockeri and Stromateus stellatus fish species. This proof-of-concept method is composed of two channels of a convolutional neural network (CNN) architecture that processes the Red-Green-Blue (RGB) images and the visible and near-infrared (VIS-NIR) reflectance spectra of each species. The classification results of the CNN model achieved over 94% in all performance metrics, outperforming other state-of-the-art techniques. These results support the potential use of the proposed method to automatically monitor fish landings and, therefore, ensure compliance with the established fishing quotas.


Assuntos
Aprendizado Profundo , Animais , Chile , Benchmarking , Alimentos , Indústrias
2.
Mar Pollut Bull ; 196: 115481, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857060

RESUMO

Anthropogenic Marine Litter (AML) accumulating on beaches causes damage to coastal ecosystems and high costs to local communities. Volunteers sampled AML on 130 beaches along the central and southern East Pacific coasts, with AML densities ranging from 0.46 to 2.26 items m-2 in the different countries. AML composition was dominated by plastics and cigarette butts, the latter especially in Mexico and Chile. The accumulation of AML in the upper zones of the beaches and substantial proportions of cigarette butts, glass and metal pointed mainly to local sources. Statistical modelling of litter sources on continental beaches revealed that tourism, access and related infrastructure (e.g. parking lots) best explained AML densities, while plastic densities were also influenced by the distance from river mouths and national Gross Domestic Product. Large-scale monitoring can be a useful tool to evaluate the effectiveness of public policies that should primarily focus on land sources.


Assuntos
Leucemia Mieloide Aguda , Resíduos , Humanos , Resíduos/análise , Monitoramento Ambiental , Ecossistema , Praias , Plásticos
3.
Sensors (Basel) ; 23(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836993

RESUMO

Fishing landings in Chile are inspected to control fisheries that are subject to catch quotas. The control process is not easy since the volumes extracted are large and the numbers of landings and artisan shipowners are high. Moreover, the number of inspectors is limited, and a non-automated method is utilized that normally requires months of training. In this work, we propose, design, and implement an automated fish landing control system. The system consists of a custom gate with a camera array and controlled illumination that performs automatic video acquisition once the fish landing starts. The imagery is sent to the cloud in real time and processed by a custom-designed detection algorithm based on deep convolutional networks. The detection algorithm identifies and classifies different pelagic species in real time, and it has been tuned to identify the specific species found in landings of two fishing industries in the Biobío region in Chile. A web-based industrial software was also developed to display a list of fish detections, record relevant statistical summaries, and create landing reports in a user interface. All the records are stored in the cloud for future analyses and possible Chilean government audits. The system can automatically, remotely, and continuously identify and classify the following species: anchovy, jack mackerel, jumbo squid, mackerel, sardine, and snoek, considerably outperforming the current manual procedure.


Assuntos
Conservação dos Recursos Naturais , Caça , Animais , Chile , Alimentos Marinhos , Pesqueiros , Peixes
4.
Mar Pollut Bull ; 194(Pt B): 115380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37562239

RESUMO

Human settlements within the Antarctic continent have caused significant coastal pollution by littering plastic. The present study assessed the potential presence of microplastics in the gastrointestinal tract of the Antarctic fish Harpagifer antarcticus, endemic to the polar region, and in the sub-Antarctic fish Harpagifer bispinis. H. antarcticus. A total of 358 microfibers of multiple colors were found in 89 % of H. antarcticus and 73 % of H. bispinis gastrointestinal track. A Micro-FTIR analysis characterized a sub-group (n = 42) of microfibers. It revealed that most of the fibers were cellulose (69 %). Manmade fibers such as microplastics polyethylene terephtalate, acrylics, and semisynthetic/natural cellulosic fibers were present in the fish samples. All the microfibers extracted were textile fibers of blue, black, red, green, and violet color. Our results suggest that laundry greywater discharges of human settlements near coastal waters in Antarctica are a major source of these pollutants in the Antarctic fish.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Humanos , Microplásticos , Plásticos/análise , Regiões Antárticas , Têxteis , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
5.
Mol Ecol ; 32(9): 2219-2233, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36715263

RESUMO

The recurrent colonization of freshwater habitats and subsequent loss of diadromy is a major ecological transition that has been reported in many ancestrally diadromous fishes. Such residency is often accompanied by a loss of tolerance to seawater. The amphidromous Galaxias maculatus has repeatedly colonized freshwater streams with evidence that freshwater-resident populations exhibit stark differences in their tolerance to higher salinities. Here, we used transcriptomics to gain insight into the mechanisms contributing to reduced tolerance to higher salinities in freshwater resident populations. We conducted an acute salinity challenge (0 ppt to 23-25 ppt) and measured osmoregulatory ability (muscle water content) over 48 h in three populations: diadromous, saltwater intolerant resident (Toltén), and saltwater tolerant resident (Valdivia). RNA sequencing of the gills identified genes that were differentially expressed in association with the salinity change and associated with the loss of saltwater tolerance in the Toltén population. Key genes associated with saltwater acclimation were characterized in diadromous G. maculatus individuals, some of which were also expressed in the saltwater tolerant resident population (Valdivia). We found that some of these "saltwater acclimation" genes, including the cystic fibrosis transmembrane conductance regulator gene (CFTR), were not significantly upregulated in the saltwater intolerant resident population (Toltén), suggesting a potential mechanism for the loss of tolerance to higher salinities. As the suite of differentially expressed genes in the diadromous-resident comparison differed between freshwater populations, we hypothesize that diadromy loss results in unique evolutionary trajectories due to drift, so the loss of diadromy does not necessarily lead to a loss in upper salinity tolerance.


La colonización recurrente de hábitats de agua dulce y la subsecuente pérdida de diadromía es una transición ecológica importante que ha sido reportada en varias especies de peces con ancestros diádromos. Esta residencia está acompañada frecuentemente por la pérdida de tolerancia a ambientes de agua salada. Galaxias maculatus, especie anfídroma, ha colonizado ríos repetidamente y existe evidencia que las poblaciones residentes presentan diferencias respecto a la tolerancia al agua salada. En este estudio, usamos transcriptómica para dilucidar los mecanismos que contribuyen a la reducida tolerancia a altas salinidades en las poblaciones residentes de agua dulce. Realizamos un desafío agudo de salinidad (0 ppt a 23-2 ppt) y medimos la habilidad osmoreguladora (contenido de agua en músculo) por 48 horas en individuos de tres poblaciones: una diádroma, una intolerante a agua salada (Toltén) y una tolerante a agua salada (Valdivia). Con el secuenciamiento de ARN de las branquias identificamos los genes expresados diferencialmente al cambio de salinidad y cuales están asociados a la pérdida de tolerancia a agua salada en la población de Toltén. Genes claves asociados a la aclimatación al agua salada fueron caracterizados en individuos diádromos, algunos de ellos también se expresaron en la población residente tolerante al agua salada (Valdivia). Sin embargo, algunos genes involucrados en la aclimatación al agua salada, incluyendo el gen regulador de la conductancia transmembrana de la fibrosis quística (CFTR), no se diferenciaron significativamente en la población residente intolerante al agua salada (Toltén), sugiriendo un mecanismo potencial de la pérdida de tolerancia a ambientes con salinidad elevada. Como el conjunto de genes expresados difiere entre las dos poblaciones residentes al compararse con la población diádroma, hipotetizamos que la pérdida de diadromía resulta en trayectorias evolutivas únicas debido a deriva génica, por lo que la pérdida de la diadromía no necesariamente conlleva a la pérdida de la tolerancia a aguas saladas.


Assuntos
Osmeriformes , Animais , Osmeriformes/genética , Tolerância ao Sal/genética , Evolução Biológica , Aclimatação/genética , Salinidade , Expressão Gênica , Brânquias , Água do Mar
6.
Environ Res ; 216(Pt 2): 114515, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270533

RESUMO

Foraminifera are considered good bioindicators of environmental stress based on morphological abnormalities, but physiological responses occur far earlier and have not been evaluated as pollution markers. The aim of this review was to collate all published articles reporting physiological changes in foraminifera after environmental and anthropogenic stressors, to evaluate their reliability as early markers of environmental stress. We reviewed 70 studies, meeting the inclusion criteria, reporting 13 physiological effects classes after exposure to 17 different stressors. Immune functions, bleaching and lifecycle disruptions, were the most reported. Amphistegina and Ammonia showed high proportion of effects with lead and mercury, with a significant relationship between these heavy metals and the number of physiological effects classes in Ammonia, and between bleaching in Amphistegina gibbosa and Amphistegina lobifera with solar light and temperature. This suggests physiological responses are potentially reliable early indicators of environmental stress. It is necessary to increase quantitative physiological measures and standard exposure protocols in order to properly evaluate these organisms as pollution bioindicators.


Assuntos
Foraminíferos , Metais Pesados , Poluentes Químicos da Água , Foraminíferos/fisiologia , Biomarcadores Ambientais , Amônia , Reprodutibilidade dos Testes , Metais Pesados/toxicidade , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 857(Pt 1): 159135, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36191714

RESUMO

Microplastics are a widespread environmental contaminant. Although detrimental effects on aquatic organisms are well documented, little is known about the long-term effects of microplastic exposure to filter-feeding organisms at ecologically realistic levels. This study investigates the effects of environmentally relevant concentrations of polyethylene micro beads ranging in size from 3 to 30 µm, on the physiology and energetics of a coastal filter-feeding crab Petrolisthes laevigatus. We evaluated the impact of microplastics by exposing P. laevigatus to two different concentrations and exposure times: i) a chronic exposure for five months at 250 particles L-1, and ii) an acute exposure for 48 h at 20,800 particles L-1, ~80 times higher than the chronic exposure. The results showed that only chronic exposures elicited negative effects on the coastal crab in both, metabolic and physiological parameters. Our findings demonstrate a strong correlation between the ingestion rate and weight loss, even at low concentrations, the crabs exhibited severe nutritional damage as a result of long-term microplastic exposure. By contrast, acute exposure revealed no significant effects to the crabs, a possible explanation for this being short-term compensatory responses. These results suggest that environmentally relevant concentrations of microplastics are harmful to marine organisms, and they should be evaluated during realistic temporal scales, as their effects strongly dependent on the exposure time. Our results also suggest that the effects of microplastics have been likely underestimated to date, due to the dominance of short-term exposures (acute) reported in the current literature.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Plásticos/metabolismo , Poluentes Químicos da Água/análise , Organismos Aquáticos/metabolismo
8.
Glob Chang Biol ; 28(19): 5695-5707, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876025

RESUMO

Aerobic metabolism generates 15-20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water-breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.


Assuntos
Peixes , Oxigênio , Animais , Tamanho Celular , Hipóxia/metabolismo , Oxigênio/metabolismo , Filogenia , Temperatura
9.
Environ Res ; 209: 112808, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35085565

RESUMO

Microplastics (MPs) have been recognized as one of the most ubiquitous environmental pollutants globally. They have been found in all ecosystems studied to date, threatening biological diversity, ecosystem functioning and human health. The present study aimed to elucidate the environmental and anthropogenic drivers of MP dynamics in the whole catchment of the Biobío river, one of the largest rivers in South America. MP concentration and characteristics were analysed in 18 sites subjected to different sources of pollution and other human-related impacts. The sampling sites were classified in relation to altitudinal zones (highland, midland and lowland) and ecosystem types (fluvial and reservoir), and different water and territorial environmental variables were further collated and considered for analysis. Seven types of microplastic polymers were identified in the samples analysed, with a catchment mean (±SE) MP concentration of 22 ± 0.4 particles m-3, and MP presence being significantly higher in lowlands (26 ± 2 particle m-3) and in reservoirs (42 ± 14 particle m-3). The most abundant type of MP was fragments (84%), with a mean concentration of 37 ± 6 particles m-3. Overall, MP concentrations were low compared to those found in other studies, with a strong influence of human population size.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos/análise , Rios , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 814: 152506, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34968600

RESUMO

Several studies have focused on the presence and distribution of microplastics within the water column of coastal waters, but the dynamics of these particles in sediments have received little attention. Here we examine the concentrations and characteristics of microplastics in sediment samples collected from 35 stations within the Inner Sea of Chiloé, Chilean Patagonia. Current velocity, grain size, intensity of salmon farming activities, and human population density were all evaluated as factors potentially explaining concentrations and distribution of microplastic particles within these sediments. Microplastics were detected in all samples, with the highest abundance represented by fibers (88%), fragments (10%) and films (2%). Across the sampled sites, microplastic concentrations averaged 72.2 ± 32.4 (SD) items per kg dw (dry weight) sediment, with the principal polymers identified as polyethylene terephthalate (PET), acrylic, polypropylene (PP) and polyurethane (PUR). Approximately 40% of the variability in distribution and abundance of microplastics was explained by current velocity combined with proximity and intensity of local salmon production activities. SYNOPSIS: Marine currents and aquaculture intensity explain abundance and dynamics of microplastics in marine sediments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Humanos , Plásticos , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 285: 117148, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33962309

RESUMO

Acoustic pollution in aquatic environments has increased with adverse effects on many aquatic organisms. However, little work has been done considering the effects of the vibratory component of acoustic stimuli, which can be transmitted in the substrate and propagated into the aquatic medium. Benthic marine organisms, including many invertebrates, are capable of sensing seabed vibration, yet the responses they trigger on organism have received little attention. This study investigates the impact of underwater vibration on the physiology and behaviour of a ubiquitous inhabitant of coastal areas of the northern hemisphere, the shore crab Carcinus maenas. We developed a novel vibratory apparatus with geophones supported on a softly sprung frame to induce a seabed vibration of 20 Hz frequency, as observed during dredging, piling and other anthropogenic activities. The geophone internal mass caused the frame to vibrate in a controlled manner. Our results show that transition from ambient to anthropogenic vibrations induced an increase in activity and antennae beats in shore crabs, indicating perception of the vibratory stimulus and a higher stress level. There was also a trend on sex-specific responses to anthropogenic vibration, with males showing a higher activity level than females. However, no effect of anthropogenic vibrations was found upon oxygen consumption. These results show that anthropogenic underwater vibration induces behavioural responses in Carcinus maenas. This highlights the importance of evaluating man-made vibratory activities on coastal invertebrates and the necessity of evaluating anthropogenic effects on both sexes.


Assuntos
Braquiúros , Acústica , Animais , Organismos Aquáticos , Humanos , Invertebrados , Vibração
13.
Sci Rep ; 11(1): 9849, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972582

RESUMO

Several studies have examined the transmission dynamics of the novel COVID-19 disease in different parts of the world. Some have reported relationships with various environmental variables, suggesting that spread of the disease is enhanced in colder and drier climates. However, evidence is still scarce and mostly limited to a few countries, particularly from Asia. We examined the potential role of multiple environmental variables in COVID-19 infection rate [measured as mean relative infection rate = (number of infected inhabitants per week / total population) × 100.000) from February 23 to August 16, 2020 across 360 cities of Chile. Chile has a large climatic gradient (≈ 40º of latitude, ≈ 4000 m of altitude and 5 climatic zones, from desert to tundra), but all cities share their social behaviour patterns and regulations. Our results indicated that COVID-19 transmission in Chile was mostly related to three main climatic factors (minimum temperature, atmospheric pressure and relative humidity). Transmission was greater in colder and drier cities and when atmospheric pressure was lower. The results of this study support some previous findings about the main climatic determinants of COVID-19 transmission, which may be useful for decision-making and management of the disease.


Assuntos
COVID-19/transmissão , Meio Ambiente , SARS-CoV-2/isolamento & purificação , Estações do Ano , Altitude , Pressão Atmosférica , COVID-19/epidemiologia , COVID-19/virologia , Chile/epidemiologia , Humanos , Umidade , Pandemias , SARS-CoV-2/fisiologia , Temperatura , Tundra
14.
J Comp Physiol B ; 191(4): 617-628, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33948707

RESUMO

Metabolic scaling is a well-known biological pattern. Theoretical scaling exponents near 0.67 and 0.75 are the most widely accepted for aerobic metabolism, but little is known about the scaling of anaerobic metabolism. Furthermore, metabolic scaling has been mainly evaluated in organisms primarily relying on aerobic pathways. Here we evaluate both aerobic and anaerobic metabolic scaling in Parastacus pugnax, a burrowing freshwater crayfish endemic to Chile, which inhabits waters with low pO2 (~ 1 mg O2 L-1, measured in this study). We determined the metabolic rate, total oxidative capacity (Electron Transport System: ETS), critical oxygen tension (Pcrit) and muscular Lactate dehydrogenase (LHD) and Malate dehydrogenase (MDH) enzymatic activities (proxies of anaerobic metabolism) over a wide range of P. pugnax sizes (0.24-42.93 g wet mass). Aerobic metabolism scaled with crayfish size with an exponent of 0.78, remarkably similar to the 0.73 which scaled the ETS, the enzymatic complex behind respiration. Critical partial pressure of oxygen (Pcrit) was calculated as 15.6 ± 2.9 mmHg, showing that aerobic metabolism was efficiently maintained until ~ 10% air saturation. Below this threshold, P. pugnax switched to anaerobic metabolism, evidenced by a reduction in aerobic metabolism and ETS activity under chronic low oxygen conditions. None of the activities of MDH, LDH, their ratio (MDH/LDH), nor Pcrit scaled with crayfish size, indicating that these animals are equally adapted to hypoxic environments throughout their whole ontogeny. Given the particularities of its habitat, the information presented here is valuable for a proper management and successful conservation.


Assuntos
Astacoidea , Oxigênio , Anaerobiose , Animais , Água Doce , Hipóxia
15.
Mar Environ Res ; 169: 105343, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33930797

RESUMO

Population dynamics and their response to environmental stressors have been widely studied in intertidal organisms. However, how these dynamics and responses change with animal age have been largely ignored to date. Traditionally, it is assumed that younger organisms are more sensitive than adults to environmental stressors; under this perspective it could be predicted that fully grown organisms should be able to occupy the harsh upper limit of their intertidal habitat. However, in some intertidal Porcelain crabs the opposite distribution has been observed. Using Petrolisthes laevigatus, we tested the physiological tolerance of crabs of different sizes (i.e. age) and evaluated how this trait shapes population dynamics (distribution and small-scale migrations under different weather conditions). We determined the abundance and size distribution of P. laevigatus at the middle and upper intertidal levels during sunny and rainy days, finding that abundances decreased drastically and size distribution shifted to smaller individuals on rainy days. In the laboratory, survival and behavioural responses of individuals in water at 5, 10, 15 and 33 PSU salinities were evaluated. Young crabs were found in higher proportion in the upper intertidal while fully grown crabs (i.e. adults) mainly occupied the middle intertidal zone. Young crabs had a higher osmoregulatory capacity than adults, as they were better at regulating passive water uptake when challenged with diluted seawater. This was also correlated with a lower lethal salinity LC50 in young crabs compared to adults. Behavioural trials showed that young crabs performed better escaping in both water and air, at intermediate and reduced salinities than adults. Therefore, weather influences small scale migrations from the upper to the lower intertidal zone, and this migration is also age-dependent, with younger crabs being more tolerant to low salinities and therefore allowing them to remain in the upper intertidal zone during raniny days.


Assuntos
Anomuros , Braquiúros , Animais , Porcelana Dentária , Dinâmica Populacional , Água do Mar
16.
Sci Rep ; 10(1): 17181, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057075

RESUMO

A select group of marine organisms can enter the Oxygen Minimum Zones (OMZs) and even anoxic waters, while performing diel vertical migration (DVM). DVM of the euphausiid Euphausia eximia off northern Chile in the spring of 2015 was documented based on acoustic measurements using an echo sounder along with net samplings. Dissolved oxygen (DO) concentrations were obtained using a vertical profiler, and water samples were collected to obtain in situ nitrite (NO2-) concentrations as well as pHT, total alkalinity (AT), and therefore carbon dioxide partial pressure (pCO2) was estimated. Krill were found to migrate up to the surface (0-50 m) during the night and returned to ca. 200-300 m depth during the day, spending between 11 and 14 h at these layers. At the surface, DO and NO2- concentrations were 208 and 0.14 µM respectively, while pHT was 8.04 and 405 µatm pCO2. In contrast, at the deeper layers (200-300 m), DO and NO2- were < 3 and 6.3 µM respectively, with pHT 7.53 and 1490 µatm pCO2. The pHT and high pCO2 values at depths represent the conditions predicted for open ocean waters in a worst-case global warming scenario by 2150. The acoustic scatter suggested that > 60% of the krill swarms enter the OMZ and anoxic waters during the daytime. These frequent migrations suggest that krill can tolerate such extreme conditions associated with anoxic and high-pCO2 waters. The inferences drawn from the observation of these migrations might have strong implications for the current oceanic carbon pump models, highlighting the need for understanding the molecular and physiological adaptations allowing these migrations.

17.
Mol Ecol ; 29(24): 4857-4870, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048403

RESUMO

Diadromy is known for having major effects on the distribution and richness of aquatic species, and so does its loss. The loss of diadromy has led to the diversification of many species, yet research focusing on understanding its molecular basis and consequences are limited. This is particularly true for amphidromous species despite being the most abundant group of diadromous species. Galaxias maculatus, an amphidromous species and one of the most widely distributed fishes in the Southern Hemisphere, exhibits many instances of nonmigratory or resident populations. The existence of naturally replicated resident populations in Patagonia can serve as an ideal system for the study of the mechanisms that lead to the loss of the diadromy and its ecological and evolutionary consequences. Here, we studied two adjacent river systems in which resident populations are genetically differentiated yet derived from the same diadromous population. By combining a reciprocal transplant experiment with genomic data, we showed that the two resident populations followed different evolutionary pathways by exhibiting a differential response in their capacity to survive in salt water. While one resident population was able to survive salt water, the other was not. Genomic analyses provided insights into the genes that distinguished (a) migratory from nonmigratory populations; (b) populations that can vs those that cannot survive a saltwater environment; and (c) between these resident populations. This study demonstrates that the loss of diadromy can be achieved by different pathways and that environmental (selection) and random (genetic drift) forces shape this dynamic evolutionary process.


Assuntos
Osmeriformes , Migração Animal , Animais , Evolução Biológica , Genoma , Genômica , Osmeriformes/genética
18.
Mar Environ Res ; 162: 105154, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32998067

RESUMO

Anthropogenic CO2 emissions have led to ocean acidification and a rise in the temperature. The present study evaluates the effects of temperature (10, 15 and 20 °C) and pCO2 (400 and 1200 µatm) on the early development and oxygen consumption rate (OCR) of the sea louse Caligus rogercresseyi. Only temperature has an effect on the hatching and development times of nauplius I. But both factors affected the development time of nauplius II (

Assuntos
Copépodes , Ftirápteros , Animais , Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
19.
Sci Total Environ ; 741: 140216, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886998

RESUMO

About 90% of the plastic garbage remains in terrestrial ecosystems, and increasing evidence highlights the exposure of crops to plastic particles. However, the potential bioaccumulation of microplastics by plants and their effects on plants' physiology remains unexplored. Here, we evaluated the adsorption, potential uptake, and physiological effects of polyethylene (PE) microbeads in an experimental hydroponic culture of maize. Using isotope analysis, taking advantage of the different carbon isotope composition (δ13C) of fossil-derived PE and C4 plants (e.g., maize), we estimated that about 30% of the carbon in the rhizosphere of microplastic-exposed plants was derived from PE. Still, we did not find evidence of PE translocation to the shoots. Plastic bioaccumulation in the rhizosphere caused a significant decline in transpiration, nitrogen content, and growth. Our results indicate that plastic particles may accumulate in the rhizosphere, impairing water and nutrient uptake, and eventually reaching root eaters. Due to the implications for food production and livestock feeding, our findings encourage further research on the mechanism leading to the bioaccumulation of microplastics on the surface of belowground tissues.


Assuntos
Polietileno , Poluentes Químicos da Água/análise , Adsorção , Ecossistema , Hidroponia , Microesferas , Plásticos , Zea mays
20.
Mar Pollut Bull ; 160: 111591, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32898738

RESUMO

We investigated the distribution of microplastics in the water column along a large remote estuarine system located between the Northern and Southern Patagonian Ice Fields in Chilean Patagonia, and connected with the Pacific Ocean through the Gulf of Penas. Microplastic particles were found in all samples, with abundances ranging from 0.1 to 7 particles/m3. Polymers identified were principally acrylics, PET, and cellophane. The average abundance of microplastics in surface waters was similar along the whole estuary (0.4 ± 0.3 particles/m3) with acrylics and epoxy resins being more abundant near Caleta Tortel, the only small village in the area. The observed higher abundance of microplastics in the deeper waters towards the Gulf of Penas points to intrusions of subsurface waters transporting plastic particles from the ocean into the channel system. This underlines the potential of ocean currents in transporting plastic pollution into pristine fjords and channels in Chilean Patagonia.


Assuntos
Estuários , Poluentes Químicos da Água , Chile , Ecossistema , Monitoramento Ambiental , Microplásticos , Oceano Pacífico , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...