Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAC Antimicrob Resist ; 5(3): dlad072, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325249

RESUMO

A multi-faceted antimicrobial stewardship programme contributed to a 17.8% reduction in antibiotic consumption for our English NHS Trust. This dramatic achievement could be partially attributed to an empirical antibiotic guideline change, introduction of procalcitonin testing to guide in antibiotic decisions in SARS-CoV-2 inpatients and use of electronic antibiotic stewardship strategies. In this article, we describe the multifaceted, step-by-step antibiotic stewardship approach that weathered the SARS-CoV-2 pandemic and led to this dramatic improvement. Also included for completeness are interventions that did not pass the plan, do, study, act (PDSA) cycle and were therefore discontinued.

2.
Antibiotics (Basel) ; 10(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498716

RESUMO

Since first identified in late 2019, the acute respiratory syndrome coronavirus (SARS-CoV2) and the resulting coronavirus disease (COVID-19) pandemic has overwhelmed healthcare systems worldwide, often diverting key resources in a bid to meet unprecedented challenges. To measure its impact on national antimicrobial stewardship (AMS) activities, a questionnaire was designed and disseminated to antimicrobialstewardship leads in the United Kingdom (UK). Most respondents reported a reduction in AMS activity with 64% (61/95) reporting that COVID-19 had a negative impact on routine AMS activities. Activities reported to have been negatively affected by the pandemic include audit, quality improvement initiatives, education, AMS meetings, and multidisciplinary working including ward rounds. However, positive outcomes were also identified, with technology being increasingly used as a tool to facilitate stewardship e.g., virtual meetings and ward rounds and increased the acceptance of using procalcitonin tests to distinguish between viral and bacterial infections. The COVID-19 pandemic has had a significant impact on the AMS activities undertaken across the UK. The long-term impact of the reduced AMS activities on incidence of AMR are not yet known. The legacy of innovation, use of technology, and increased collaboration from the pandemic could strengthen AMS in the post-pandemic era and presents opportunities for further development of AMS.

3.
Protein Sci ; 18(6): 1197-209, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19472335

RESUMO

The microsporidian Encephalitozoon cuniculi is an intracellular eukaryotic parasite considered to be an emerging opportunistic human pathogen. The infectious stage of this parasite is a unicellular spore that is surrounded by a chitin containing endospore layer and an external proteinaceous exospore. A putative chitin deacetylase (ECU11_0510) localizes to the interface between the plasma membrane and the endospore. Chitin deacetylases are family 4 carbohydrate esterases in the CAZY classification, and several bacterial members of this family are involved in evading lysis by host glycosidases, through partial de-N-acetylation of cell wall peptidoglycan. Similarly, ECU11_0510 could be important for E. cuniculi survival in the host, by protecting the chitin layer from hydrolysis by human chitinases. Here, we describe the biochemical, structural, and glycan binding properties of the protein. Enzymatic analyses showed that the putative deacetylase is unable to deacetylate chitooligosaccharides or crystalline beta-chitin. Furthermore, carbohydrate microarray analysis revealed that the protein bound neither chitooligosaccharides nor any of a wide range of other glycans or chitin. The high resolution crystal structure revealed dramatic rearrangements in the positions of catalytic and substrate binding residues, which explain the loss of deacetylase activity, adding to the unusual structural plasticity observed in other members of this esterase family. Thus, it appears that the ECU11_0510 protein is not a carbohydrate deacetylase and may fulfill an as yet undiscovered role in the E. cuniculi parasite.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Encephalitozoon cuniculi/enzimologia , Animais , Linhagem Celular , Quitina/química , Quitina/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Cães , Humanos , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
4.
J Bacteriol ; 191(1): 394-402, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18978064

RESUMO

The genome sequence of the oral pathogen Streptococcus mutans predicts the presence of two putative polysaccharide deacetylases. The first, designated PgdA in this paper, shows homology to the catalytic domains of peptidoglycan deacetylases from Streptococcus pneumoniae and Listeria monocytogenes, which are both thought to be involved in the bacterial defense mechanism against human mucosal lysozyme and are part of the CAZY family 4 carbohydrate esterases. S. mutans cells in which the pgdA gene was deleted displayed a different colony texture and a slightly increased cell surface hydrophobicity and yet did not become hypersensitive to lysozyme as shown previously for S. pneumoniae. To understand this apparent lack of activity, the high-resolution X-ray structure of S. mutans PgdA was determined; it showed the typical carbohydrate esterase 4 fold, with metal bound in a His-His-Asp triad. Analysis of the protein surface showed that an extended groove lined with aromatic residues is orientated toward the active-site residues. The protein exhibited metal-dependent de-N-acetylase activity toward a hexamer of N-acetylglucosamine. No activity was observed toward shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. In agreement with the lysozyme data this would suggest that S. mutans PgdA does not act on peptidoglycan but on an as-yet-unidentified polysaccharide within the bacterial cell surface. Strikingly, the pgdA-knockout strain showed a significant increase in aggregation/agglutination by salivary agglutinin, in agreement with this gene acting as a deacetylase of a cell surface glycan.


Assuntos
Aglutininas/metabolismo , Amidoidrolases/genética , Saliva/microbiologia , Streptococcus mutans/enzimologia , Streptococcus mutans/genética , Aglutininas/fisiologia , Amidoidrolases/deficiência , Proteínas de Bactérias/genética , Sequência de Carboidratos , Adesão Celular , Quitina/fisiologia , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Metais/farmacologia , Muramidase/metabolismo , Oligossacarídeos/química , Peptidoglicano/química , Reação em Cadeia da Polimerase , Saliva/fisiologia
5.
Biochem J ; 393(Pt 2): 447-57, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16225460

RESUMO

Type II fatty acid biosynthesis represents an attractive target for the discovery of new antimalarial drugs. Previous studies have identified malarial ENR (enoyl acyl-carrier-protein reductase, or FabI) as the target for the antiseptic triclosan. In the present paper, we report the biochemical properties and 1.5 A (1 A=0.1 nm) crystal structure of OAR (3-oxoacyl acyl-carrier-protein reductase, or FabG), the second reductive step in fatty acid biosynthesis and its inhibition by hexachlorophene. Under optimal conditions of pH and ionic strength, Plasmodium falciparum OAR displays kinetic properties similar to those of OAR from bacteria or plants. Activity with NADH is <3% of that with NADPH. Fluorescence enhancement studies indicate that NADPH can bind to the free enzyme, consistent with kinetic and product inhibition studies suggesting a steady-state ordered mechanism. The crystal structure reveals a tetramer with a sulphate ion bound in the cofactor-binding site such that the side chains of the catalytic triad of serine, tyrosine and lysine are aligned in an active conformation, as previously observed in the Escherichia coli OAR-NADP+ complex. A cluster of positively charged residues is positioned at the entrance to the active site, consistent with the proposed recognition site for the physiological substrate (3-oxoacyl-acyl-carrier protein) in E. coli OAR. The antibacterial and anthelminthic agent hexachlorophene is a potent inhibitor of OAR (IC50 2.05 microM) displaying non-linear competitive inhibition with respect to NADPH. Hexachlorophene (EC50 6.2 microM) and analogues such as bithionol also have antimalarial activity in vitro, suggesting they might be useful leads for further development.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/biossíntese , Plasmodium falciparum/enzimologia , 3-Oxoacil-(Proteína Carreadora de Acil) Redutase , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Coenzimas/metabolismo , Inibidores Enzimáticos/química , Regulação Enzimológica da Expressão Gênica , Concentração Inibidora 50 , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , NADP/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Estrutura Quaternária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
J Med Chem ; 48(19): 5932-41, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16161997

RESUMO

Analogues of the natural antibiotic thiolactomycin (TLM), an inhibitor of the condensing reactions of type II fatty acid synthase, were synthesized and evaluated for their ability to inhibit the growth of the malaria parasite Plasmodium falciparum. Alkylation of the C4 hydroxyl group led to the most significant increase in growth inhibition (over a 100-fold increase in activity compared to TLM). To investigate the mode of action, the P. falciparum KASIII enzyme was produced for inhibitor assay. A number of TLM derivatives were identified that showed improved inhibition of this enzyme compared to TLM. Structure-activity relationships for enzyme inhibition were identified for some series of TLM analogues, and these also showed weak correlation with inhibition of parasite growth, but this did not hold for other series. On the basis of the lack of a clear correlation between inhibition of pfKASIII activity and parasite growth, we conclude that pfKASIII is not the primary target of TLM analogues. Some of the analogues also inhibited the growth of the parasitic protozoa Trypanosoma cruzi, T. brucei, and Leishmania donovani.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Antimaláricos/síntese química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/química , Acetiltransferases/genética , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Linhagem Celular , Ácido Graxo Sintase Tipo II , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mioblastos/efeitos dos fármacos , Mioblastos/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Ratos , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Tiofenos/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologia
7.
Bioorg Med Chem ; 12(4): 683-92, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14759729

RESUMO

A series of analogues of the naturally occurring antibiotic thiolactomycin (TLM) have been synthesised and evaluated for their ability to inhibit the growth of the malaria parasite, Plasmodium falciparum. Thiolactomycin is an inhibitor of Type II fatty acid synthase which is found in plants and most prokaryotes, but not an inhibitor of Type I fatty acid synthase in mammals. A number of the analogues showed inhibition equal to or greater than TLM. The introduction of hydrophobic alkyl groups at the C3 and C5 positions of the thiolactone ring lead to increased inhibition, the best showing a fourteenfold increase in activity over TLM. In addition, some of the analogues showed activity when assayed against the parasitic protozoa, Trypanosoma cruzi and Trypanosoma brucei.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Animais , Antimaláricos/síntese química , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Escherichia coli/enzimologia , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Ratos , Tiofenos/síntese química , Tripanossomicidas/síntese química , Trypanosoma/efeitos dos fármacos , Trypanosoma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA