Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Commun ; 14(1): 3128, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253730

RESUMO

Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.


Assuntos
Bioimpressão , Organoides , Hidrogéis/química , Engenharia Tecidual/métodos , Polaridade Celular , Pulmão
3.
Cell Stem Cell ; 29(12): 1703-1717.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459970

RESUMO

The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization. Here, using an unbiased and integrated approach combining microfluidic cultures with transcriptional, proteomic, and secretome analyses, we found that naive, but not primed, hiPSC colonies are characterized by a self-organized ECM-rich microenvironment. Based on this, we developed a 3D culture system that supports robust long-term feeder-free self-renewal of naive hiPSCs and also allows direct and timely developmental morphogenesis simply by modulating the signaling environment. Our study opens new perspectives for future applications of naive hiPSCs to study critical stages of human development in 3D starting from a single cell.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Proteômica , Matriz Extracelular , Morfogênese
4.
Front Bioeng Biotechnol ; 10: 907159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935488

RESUMO

The human developmental processes during the early post-implantation stage instruct the specification and organization of the lineage progenitors into a body plan. These processes, which include patterning, cell sorting, and establishment of the three germ layers, have been classically studied in non-human model organisms and only recently, through micropatterning technology, in a human-specific context. Micropatterning technology has unveiled mechanisms during patterning and germ layer specification; however, cell sorting and their segregation in specific germ layer combinations have not been investigated yet in a human-specific in vitro system. Here, we developed an in vitro model of human ectodermal patterning, in which human pluripotent stem cells (hPSCs) self-organize to form a radially regionalized neural and non-central nervous system (CNS) ectoderm. We showed that by using micropatterning technology and by modulating BMP and WNT signals, we can regulate the appearance and spatial distribution of the different ectodermal populations. This pre-patterned ectoderm can be used to investigate the cell sorting behavior of hPSC-derived meso-endoderm cells, with an endoderm that segregates from the neural ectoderm. Thus, the combination of micro-technology with germ layer cross-mixing enables the study of cell sorting of different germ layers in a human context.

5.
NPJ Regen Med ; 7(1): 25, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468920

RESUMO

The production of skeletal muscle constructs useful for replacing large defects in vivo, such as in congenital diaphragmatic hernia (CDH), is still considered a challenge. The standard application of prosthetic material presents major limitations, such as hernia recurrences in a remarkable number of CDH patients. With this work, we developed a tissue engineering approach based on decellularized diaphragmatic muscle and human cells for the in vitro generation of diaphragmatic-like tissues as a proof-of-concept of a new option for the surgical treatment of large diaphragm defects. A customized bioreactor for diaphragmatic muscle was designed to control mechanical stimulation and promote radial stretching during the construct engineering. In vitro tests demonstrated that both ECM remodeling and fibroblast overgrowth were positively influenced by the bioreactor culture. Mechanically stimulated constructs also increased tissue maturation, with the formation of new oriented and aligned muscle fibers. Moreover, after in vivo orthotopic implantation in a surgical CDH mouse model, mechanically stimulated muscles maintained the presence of human cells within myofibers and hernia recurrence did not occur, suggesting the value of this approach for treating diaphragm defects.

6.
Nat Cell Biol ; 24(2): 168-180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165418

RESUMO

Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Mecanotransdução Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Junções Célula-Matriz/efeitos dos fármacos , Junções Célula-Matriz/metabolismo , Junções Célula-Matriz/patologia , Dinaminas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Oxirredução , Estresse Oxidativo , Fatores de Alongamento de Peptídeos/metabolismo , Microambiente Tumoral
7.
Neural Regen Res ; 17(4): 759-766, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472462

RESUMO

Skeletal muscle is a dynamic tissue in which homeostasis and function are guaranteed by a very defined three-dimensional organization of myofibers in respect to other non-muscular components, including the extracellular matrix and the nervous network. In particular, communication between myofibers and the nervous system is essential for the overall correct development and function of the skeletal muscle. A wide range of chronic, acute and genetic-based human pathologies that lead to the alteration of muscle function are associated with modified preservation of the fine interaction between motor neurons and myofibers at the neuromuscular junction. Recent advancements in the development of in vitro models for human skeletal muscle have shown that three-dimensionality and integration of multiple cell types are both key parameters required to unveil pathophysiological relevant phenotypes. Here, we describe recent achievement reached in skeletal muscle modeling which used biomaterials for the generation of three-dimensional constructs of myotubes integrated with motor neurons.

8.
Biochem Biophys Res Commun ; 560: 139-145, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33989905

RESUMO

Drug screening and disease modelling for skeletal muscle related pathologies would strongly benefit from the integration of myogenic cells derived from human pluripotent stem cells within miniaturized cell culture devices, such as microfluidic platform. Here, we identified the optimal culture conditions that allow direct differentiation of human pluripotent stem cells in myogenic cells within microfluidic devices. Myogenic cells are efficiently derived from both human embryonic (hESC) or induced pluripotent stem cells (hiPSC) in eleven days by combining small molecules and non-integrating modified mRNA (mmRNA) encoding for the master myogenic transcription factor MYOD. Our work opens new perspective for the development of patient-specific platforms in which a one-step myogenic differentiation could be used to generate skeletal muscle on-a-chip.


Assuntos
Diferenciação Celular/genética , Fibras Musculares Esqueléticas/citologia , Proteína MyoD/genética , Células-Tronco Pluripotentes/citologia , Linhagem Celular , Humanos , Dispositivos Lab-On-A-Chip , Mesoderma/citologia , Desenvolvimento Muscular , RNA Mensageiro , Transfecção
9.
Nat Biomed Eng ; 4(9): 901-915, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32572195

RESUMO

Fabrication of three-dimensional (3D) structures and functional tissues directly in live animals would enable minimally invasive surgical techniques for organ repair or reconstruction. Here, we show that 3D cell-laden photosensitive polymer hydrogels can be bioprinted across and within tissues of live mice, using bio-orthogonal two-photon cycloaddition and crosslinking of the polymers at wavelengths longer than 850 nm. Such intravital 3D bioprinting-which does not create by-products and takes advantage of commonly available multiphoton microscopes for the accurate positioning and orientation of the bioprinted structures into specific anatomical sites-enables the fabrication of complex structures inside tissues of live mice, including the dermis, skeletal muscle and brain. We also show that intravital 3D bioprinting of donor-muscle-derived stem cells under the epimysium of hindlimb muscle in mice leads to the de novo formation of myofibres in the mice. Intravital 3D bioprinting could serve as an in vivo alternative to conventional bioprinting.


Assuntos
Bioimpressão , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Hidrogéis/administração & dosagem , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Raios Infravermelhos , Injeções , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica
10.
Stem Cells Transl Med ; 9(10): 1233-1243, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32578968

RESUMO

Skeletal muscle decellularization allows the generation of natural scaffolds that retain the extracellular matrix (ECM) mechanical integrity, biological activity, and three-dimensional (3D) architecture of the native tissue. Recent reports showed that in vivo implantation of decellularized muscles supports muscle regeneration in volumetric muscle loss models, including nervous system and neuromuscular junctional homing. Since the nervous system plays pivotal roles during skeletal muscle regeneration and in tissue homeostasis, support of reinnervation is a crucial aspect to be considered. However, the effect of decellularized muscles on reinnervation and on neuronal axon growth has been poorly investigated. Here, we characterized residual protein composition of decellularized muscles by mass spectrometry and we show that scaffolds preserve structural proteins of the ECM of both skeletal muscle and peripheral nervous system. To investigate whether decellularized scaffolds could per se attract neural axons, organotypic sections of spinal cord were cultured three dimensionally in vitro, in presence or in absence of decellularized muscles. We found that neural axons extended from the spinal cord are attracted by the decellularized muscles and penetrate inside the scaffolds upon 3D coculture. These results demonstrate that decellularized scaffolds possess intrinsic neurotrophic properties, supporting their potential use for the treatment of clinical cases where extensive functional regeneration of the muscle is required.


Assuntos
Matriz Extracelular/metabolismo , Imageamento Tridimensional/métodos , Músculo Esquelético/metabolismo , Proteômica/métodos , Engenharia Tecidual/métodos , Animais , Feminino , Humanos , Masculino , Ratos
11.
PLoS One ; 15(5): e0232081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374763

RESUMO

The reproduction of reliable in vitro models of human skeletal muscle is made harder by the intrinsic 3D structural complexity of this tissue. Here we coupled engineered hydrogel with 3D structural cues and specific mechanical properties to derive human 3D muscle constructs ("myobundles") at the scale of single fibers, by using primary myoblasts or myoblasts derived from embryonic stem cells. To this aim, cell culture was performed in confined, laminin-coated micrometric channels obtained inside a 3D hydrogel characterized by the optimal stiffness for skeletal muscle myogenesis. Primary myoblasts cultured in our 3D culture system were able to undergo myotube differentiation and maturation, as demonstrated by the proper expression and localization of key components of the sarcomere and sarcolemma. Such approach allowed the generation of human myobundles of ~10 mm in length and ~120 µm in diameter, showing spontaneous contraction 7 days after cell seeding. Transcriptome analyses showed higher similarity between 3D myobundles and skeletal signature, compared to that found between 2D myotubes and skeletal muscle, mainly resulting from expression in 3D myobundles of categories of genes involved in skeletal muscle maturation, including extracellular matrix organization. Moreover, imaging analyses confirmed that structured 3D culture system was conducive to differentiation/maturation also when using myoblasts derived from embryonic stem cells. In conclusion, our structured 3D model is a promising tool for modelling human skeletal muscle in healthy and diseases conditions.


Assuntos
Técnicas de Cultura de Células , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Hidrogéis/química , Teste de Materiais , Camundongos , Modelos Biológicos , Conformação Molecular , Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Mioblastos/citologia , Mioblastos/fisiologia , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
12.
Nat Protoc ; 14(3): 722-737, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30809022

RESUMO

Human induced pluripotent stem cells (hiPSCs) have a number of potential applications in stem cell biology and regenerative medicine, including precision medicine. However, their potential clinical application is hampered by the low efficiency, high costs, and heavy workload of the reprogramming process. Here we describe a protocol to reprogram human somatic cells to hiPSCs with high efficiency in 15 d using microfluidics. We successfully downscaled an 8-d protocol based on daily transfections of mRNA encoding for reprogramming factors and immune evasion proteins. Using this protocol, we obtain hiPSC colonies (up to 160 ± 20 mean ± s.d (n = 48)) in a single 27-mm2 microfluidic chamber) 15 d after seeding ~1,500 cells per independent chamber and under xeno-free defined conditions. Only ~20 µL of medium is required per day. The hiPSC colonies extracted from the microfluidic chamber do not require further stabilization because of the short lifetime of mRNA. The high success rate of reprogramming in microfluidics, under completely defined conditions, enables hundreds of cells to be simultaneously reprogrammed, with an ~100-fold reduction in costs of raw materials compared to those for standard multiwell culture conditions. This system also enables the generation of hiPSCs suitable for clinical translation or further research into the reprogramming process.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microfluídica/métodos , Separação Celular , Forma Celular , Fibroblastos/citologia , Humanos , Microtecnologia
13.
Nat Commun ; 9(1): 4286, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327457

RESUMO

A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes.


Assuntos
Esôfago/citologia , Esôfago/fisiologia , Músculo Esquelético/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Criança , Pré-Escolar , Criopreservação/métodos , Células Epiteliais , Matriz Extracelular/fisiologia , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Crista Neural/transplante , Ratos Sprague-Dawley
14.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110909

RESUMO

Several acquired or congenital pathological conditions can affect skeletal muscle leading to volumetric muscle loss (VML), i.e., an irreversible loss of muscle mass and function. Decellularized tissues are natural scaffolds derived from tissues or organs, in which the cellular and nuclear contents are eliminated, but the tridimensional (3D) structure and composition of the extracellular matrix (ECM) are preserved. Such scaffolds retain biological activity, are biocompatible and do not show immune rejection upon allogeneic or xenogeneic transplantation. An increase number of reports suggest that decellularized tissues/organs are promising candidates for clinical application in patients affected by VML. Here we explore the different strategies used to generate decellularized matrix and their therapeutic outcome when applied to treat VML conditions, both in patients and in animal models. The wide variety of VML models, source of tissue and methods of decellularization have led to discrepant results. Our review study evaluates the biological and clinical significance of reported studies, with the final aim to clarify the main aspects that should be taken into consideration for the future application of decellularized tissues in the treatment of VML conditions.


Assuntos
Matriz Extracelular/transplante , Músculos/fisiologia , Regeneração , Aloenxertos , Animais , Xenoenxertos , Humanos
15.
Sci Rep ; 8(1): 8398, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849047

RESUMO

Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis.


Assuntos
Movimento Celular , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Regeneração , Engenharia Tecidual , Animais , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Células-Tronco/citologia
16.
Acta Biomater ; 55: 373-384, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351679

RESUMO

Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures. STATEMENT OF SIGNIFICANCE: The design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking is reported. Significantly, topological and mechanical conditions of polymerized gelatin structures were suitable for cell accommodation in the volume of the woodpiles, leading to a cell density per unit area comparable to the bare substrate. The fabricated structures, presenting micrometric features of high resolution, are actively deformed by cells, both in terms of cell invasion within rods and of cell attachment in-between contiguous woodpiles. Possible biological targets for this 3D approach are customized 3D tissue models, or studies of cell adhesion, deformation and migration.


Assuntos
Matriz Extracelular/química , Fibroblastos , Hidrogéis/química , Microscopia de Fluorescência por Excitação Multifotônica , Alicerces Teciduais/química , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos
17.
Acta Neuropathol ; 132(1): 127-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26971100

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glicólise , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Atrofia/metabolismo , Atrofia/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glicólise/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Transgênicos , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/patologia , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Distribuição Aleatória , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
18.
Front Aging Neurosci ; 6: 244, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309428

RESUMO

Mutations of genes encoding for collagen VI cause various muscle diseases in humans, including Bethlem myopathy and Ullrich congenital muscular dystrophy. Collagen VI null (Col6a1 (-/-)) mice are affected by a myopathic phenotype with mitochondrial dysfunction, spontaneous apoptosis of muscle fibers, and defective autophagy. Moreover, Col6a1 (-/-) mice display impaired muscle regeneration and defective self-renewal of satellite cells after injury. Treatment with cyclosporin A (CsA) is effective in normalizing the mitochondrial, apoptotic, and autophagic defects of myofibers in Col6a1 (-/-) mice. A pilot clinical trial with CsA in Ullrich patients suggested that CsA may increase the number of regenerating myofibers. Here, we report the effects of CsA administration at 5 mg/kg body weight every 12 h in Col6a1 (-/-) mice on muscle regeneration under physiological conditions and after cardiotoxin (CdTx)-induced muscle injury. Our findings indicate that CsA influences satellite cell activity and triggers the formation of regenerating fibers in Col6a1 (-/-) mice. Data obtained on injured muscles show that under appropriate administration, regimens CsA is able to stimulate myogenesis in Col6a1 (-/-) mice by significantly increasing the number of myogenin (MyoG)-positive cells and of regenerating myofibers at the early stages of muscle regeneration. CsA is also able to ameliorate muscle regeneration of Col6a1 (-/-) mice subjected to multiple CdTx injuries, with a concurrent maintenance of the satellite cell pool. Our data show that CsA is beneficial for muscle regeneration in Col6a1 (-/-) mice.

19.
Biochim Biophys Acta ; 1840(8): 2506-19, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24418517

RESUMO

BACKGROUND: Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche. SCOPE OF REVIEW: We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM-stem cell interactions. MAJOR CONCLUSIONS: ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior. GENERAL SIGNIFICANCE: ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.


Assuntos
Microambiente Celular , Matriz Extracelular/metabolismo , Nicho de Células-Tronco , Animais , Fenômenos Biofísicos , Linhagem da Célula , Humanos , Mecanotransdução Celular
20.
Nat Commun ; 4: 1964, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23743995

RESUMO

Adult muscle stem cells, or satellite cells have essential roles in homeostasis and regeneration of skeletal muscles. Satellite cells are located within a niche that includes myofibers and extracellular matrix. The function of specific extracellular matrix molecules in regulating SCs is poorly understood. Here, we show that the extracellular matrix protein collagen VI is a key component of the satellite cell niche. Lack of collagen VI in Col6a1(-/-) mice causes impaired muscle regeneration and reduced satellite cell self-renewal capability after injury. Collagen VI null muscles display significant decrease of stiffness, which is able to compromise the in vitro and in vivo activity of wild-type satellite cells. When collagen VI is reinstated in vivo by grafting wild-type fibroblasts, the biomechanical properties of Col6a1(-/-) muscles are ameliorated and satellite cell defects rescued. Our findings establish a critical role for an extracellular matrix molecule in satellite cell self-renewal and open new venues for therapies of collagen VI-related muscle diseases.


Assuntos
Colágeno Tipo VI/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Animais , Proliferação de Células , Colágeno Tipo VI/deficiência , Módulo de Elasticidade , Espaço Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/transplante , Imunofluorescência , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células Satélites de Músculo Esquelético/metabolismo , Nicho de Células-Tronco , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...