Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Metabolites ; 14(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38921437

RESUMO

Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.

2.
PLoS One ; 19(5): e0303914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809858

RESUMO

The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to the absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in the neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.


Assuntos
Sistemas CRISPR-Cas , Sistema Nervoso Entérico , Peixe-Zebra , Animais , Sistema Nervoso Entérico/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Crista Neural/metabolismo , Doença de Hirschsprung/genética
3.
Biochem Soc Trans ; 52(1): 177-190, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38174765

RESUMO

The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.


Assuntos
Sistema Nervoso Entérico , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Sistema Nervoso Entérico/fisiologia , Neurônios , Neurogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
4.
Allergol Immunopathol (Madr) ; 51(6): 89-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937501

RESUMO

BACKGROUND: Leukocyte adhesion deficiency type 1 (LAD-1) is an inborn error of immunity characterized by a defect in leukocyte trafficking. METHODS: Patients with clinical suspicion of LAD-1 were referred to our institution. Complete blood count and flow cytometric analysis, to identify the expression of CD18, CD11b, and the lymphocyte population phenotyping, were performed, and statistical analysis was completed. RESULTS: We report clinical manifestations and immunological findings of six Mexican patients diagnosed with LAD-1. The diagnosis was based on typical clinical presentation, combined with laboratory demonstration of leukocytosis, and significant reduction or near absence of CD18 and its associated molecules CD11a, CD11b, and CD11c on leukocytes. We found atypical manifestations, not described in other countries, such as early-onset autoimmunity or infections caused by certain microorganisms. CONCLUSIONS: Patients with LAD-1 may present with atypical manifestations, making flow cytometry an indispensable tool to confirm the diagnosis. We present the first report of LAD-1 patients in a Latin American country.


Assuntos
Antígenos CD18 , Síndrome da Aderência Leucocítica Deficitária , Humanos , Antígenos CD18/metabolismo , México , Síndrome da Aderência Leucocítica Deficitária/diagnóstico , Leucócitos
5.
Neurogastroenterol Motil ; 35(12): e14675, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743702

RESUMO

BACKGROUND: Zebrafish larvae are translucent, allowing in vivo analysis of gut development and physiology, including gut motility. While recent progress has been made in measuring gut motility in larvae, challenges remain which can influence results, such as how data are interpreted, opportunities for technical user error, and inconsistencies in methods. METHODS: To overcome these challenges, we noninvasively introduced Nile Red fluorescent dye to fill the intraluminal gut space in zebrafish larvae and collected serial confocal microscopic images of gut fluorescence. We automated the detection of fluorescent-contrasted contraction events against the median-subtracted signal and compared it to manually annotated gut contraction events across anatomically defined gut regions. Supervised machine learning (multiple logistic regression) was then used to discriminate between true contraction events and noise. To demonstrate, we analyzed motility in larvae under control and reserpine-treated conditions. We also used automated event detection analysis to compare unfed and fed larvae. KEY RESULTS: Automated analysis retained event features for proximal midgut-originating retrograde and anterograde contractions and anorectal-originating retrograde contractions. While manual annotation showed reserpine disrupted gut motility, machine learning only achieved equivalent contraction discrimination in controls and failed to accurately identify contractions after reserpine due to insufficient intraluminal fluorescence. Automated analysis also showed feeding had no effect on the frequency of anorectal-originating contractions. CONCLUSIONS & INFERENCES: Automated event detection analysis rapidly and accurately annotated contraction events, including the previously neglected phenomenon of anorectal contractions. However, challenges remain to discriminate contraction events based on intraluminal fluorescence under treatment conditions that disrupt functional motility.


Assuntos
Reserpina , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Larva/fisiologia , Algoritmos , Aprendizado de Máquina Supervisionado
6.
J Allergy Clin Immunol Pract ; 11(4): 1261-1280.e8, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708766

RESUMO

BACKGROUND: Hereditary actin-related protein 2/3 complex subunit 1B deficiency is characterized clinically by ear, skin, and lung infections, bleeding, eczema, food allergy, asthma, skin vasculitis, colitis, arthritis, short stature, and lymphadenopathy. OBJECTIVE: We aimed to describe the clinical, laboratory, and genetic features of six patients from four Mexican families. METHODS: We performed exome sequencing in patients of four families with suspected actinopathy, collected their data from medical records, and reviewed the literature for reports of other patients with actin-related protein 2/3 complex subunit 1B deficiency. RESULTS: Six patients from four families were included. All had recurrent infections, mainly bacterial pneumonia, and cellulitis. A total of 67% had eczema whereas 50% had food allergies, failure to thrive, hepatomegaly, and bleeding. Eosinophilia was found in all; 84% had thrombocytopenia, 67% had abnormal-size platelets and anemia. Serum levels of IgG, IgA, and IgE were highly increased in most; IgM was normal or low. T cells were decreased in 67% of patients, whereas B and NK cells were increased in half of patients. Two of the four probands had compound heterozygous variants. One patient was successfully transplanted. We identified 28 other patients whose most prevalent features were eczema, recurrent infections, failure to thrive, bleeding, diarrhea, allergies, vasculitis, eosinophilia, platelet abnormalities, high IgE/IgA, low T cells, and high B cells. CONCLUSION: Actin-related protein 2/3 complex subunit 1B deficiency has a variable and heterogeneous clinical spectrum, expanded by these cases to include keloid scars and Epstein-Barr virus chronic hepatitis. A novel deletion in exon 8 was shared by three unrelated families and might be the result of a founder effect.


Assuntos
Eczema , Eosinofilia , Infecções por Vírus Epstein-Barr , Vasculite , Humanos , Proteína 2 Relacionada a Actina , Actinas , Insuficiência de Crescimento , Herpesvirus Humano 4 , Imunoglobulina A , Imunoglobulina E , Reinfecção , Proteína 3 Relacionada a Actina/metabolismo
7.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234831

RESUMO

The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding for opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.

8.
Allergol. immunopatol ; 51(6): 89-96, 2023. ilus, graf, tab
Artigo em Inglês | IBECS | ID: ibc-227312

RESUMO

Background: Leukocyte adhesion deficiency type 1 (LAD-1) is an inborn error of immunity characterized by a defect in leukocyte trafficking. Methods: Patients with clinical suspicion of LAD-1 were referred to our institution. Complete blood count and flow cytometric analysis, to identify the expression of CD18, CD11b, and the lymphocyte population phenotyping, were performed, and statistical analysis was completed. Results: We report clinical manifestations and immunological findings of six Mexican patients diagnosed with LAD-1. The diagnosis was based on typical clinical presentation, combined with laboratory demonstration of leukocytosis, and significant reduction or near absence of CD18 and its associated molecules CD11a, CD11b, and CD11c on leukocytes. We found atypical manifestations, not described in other countries, such as early-onset autoimmunity or infections caused by certain microorganisms. Conclusions: Patients with LAD-1 may present with atypical manifestations, making flow cytometry an indispensable tool to confirm the diagnosis. We present the first report of LAD-1 patients in a Latin American country (AU)


Assuntos
Humanos , Masculino , Feminino , Lactente , Antígenos CD18/metabolismo , Síndrome da Aderência Leucocítica Deficitária/diagnóstico , Leucócitos/imunologia , Biomarcadores , México
9.
Front Immunol ; 13: 959733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238298

RESUMO

Introduction: The transcription factor Nuclear factor of activated T cells 5 (NFAT5), pivotal in immune regulation and function, can be induced by osmotic stress and tonicity-independent signals. Objective: We aimed to investigate and characterize two unrelated patients with Epstein-Barr virus susceptibility and no known genetic etiology. Methods: After informed consent, we reviewed the electronic charts, extracted genomic DNA, performed whole-exome sequencing, filtered, and prioritized their variants, and confirmed through Sanger sequencing, family segregation analysis, and some functional assays, including lymphoproliferation, cytotoxicity, and characterization of natural killer cells. Results: We describe two cases of pediatric Mexican patients with rare heterozygous missense variants in NFAT5 and EBV susceptibility, a school-age girl with chronic-active infection of the liver and bowel, and a teenage boy who died of hemophagocytic lymphohistiocytosis. Discussion: NFAT5 is an important regulator of the immune response. NFAT5 haploinsufficiency has been described as an immunodeficiency syndrome affecting both innate and adaptive immunity. EBV susceptibility might be another manifestation in the spectrum of this disease.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Adolescente , Criança , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Feminino , Haploinsuficiência , Herpesvirus Humano 4 , Humanos , Masculino , Fatores de Transcrição/genética
10.
Differentiation ; 128: 26-32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228422

RESUMO

Emerging during embryogenesis, the neural crest are a migratory, transient population of multipotent stem cell that differentiates into various cell types in vertebrates. Neural crest cells arise along the anterior-posterior extent of the neural tube, delaminate and migrate along routes to their final destinations. The factors that orchestrate how neural crest cells undergo delamination and their subsequent sustained migration is not fully understood. This review provides a primer about neural crest epithelial-to-mesenchymal transition (EMT), with a special emphasis on the role of the Extracellular matrix (ECM), cellular effector proteins of EMT, and subsequent migration. We also summarize published findings that link the expression of Hox transcription factors to EMT and ECM modification, thereby implicating Hox factors in regulation of EMT and ECM remodeling during neural crest cell ontogenesis.


Assuntos
Proteínas de Ligação a DNA , Crista Neural , Animais , Crista Neural/metabolismo , Tubo Neural , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/genética , Movimento Celular/genética
11.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300492

RESUMO

The enteric nervous system is a vast intrinsic network of neurons and glia within the gastrointestinal tract and is largely derived from enteric neural crest cells (ENCCs) that emigrate into the gut during vertebrate embryonic development. Study of ENCC migration dynamics and their genetic regulators provides great insights into fundamentals of collective cell migration and nervous system formation, and these are pertinent subjects for study due to their relevance to the human congenital disease Hirschsprung disease (HSCR). For the first time, we performed in toto gut imaging and single-cell generation tracing of ENCC migration in wild type and a novel ret heterozygous background zebrafish (retwmr1/+) to gain insight into ENCC dynamics in vivo. We observed that retwmr1/+ zebrafish produced fewer ENCCs localized along the gut, and these ENCCs failed to reach the hindgut, resulting in HSCR-like phenotypes. Specifically, we observed a proliferation-dependent migration mechanism, where cell divisions were associated with inter-cell distances and migration speed. Lastly, we detected a premature neuronal differentiation gene expression signature in retwmr1/+ ENCCs. These results suggest that Ret signaling may regulate maintenance of a stem state in ENCCs.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Animais , Humanos , Divisão Celular , Movimento Celular/genética , Proliferação de Células , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Crista Neural , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Peixe-Zebra/genética , Intestinos
12.
Brain Res ; 1796: 148083, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108782

RESUMO

The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.


Assuntos
Hipotálamo , Hormônio Liberador de Tireotropina , Animais , Feminino , Masculino , Ratos , Corticosterona , Hipotálamo/metabolismo , Núcleo Mediodorsal do Tálamo , Atividade Motora , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , RNA Mensageiro/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
13.
Protein Sci ; 31(10): e4443, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173166

RESUMO

Genetic code expansion technology allows for the use of noncanonical amino acids (ncAAs) to create semisynthetic organisms for both biochemical and biomedical applications. However, exogenous feeding of chemically synthesized ncAAs at high concentrations is required to compensate for the inefficient cellular uptake and incorporation of these components into proteins, especially in the case of eukaryotic cells and multicellular organisms. To generate organisms capable of autonomously biosynthesizing an ncAA and incorporating it into proteins, we have engineered a metabolic pathway for the synthesis of O-methyltyrosine (OMeY). Specifically, we endowed organisms with a marformycins biosynthetic pathway-derived methyltransferase that efficiently converts tyrosine to OMeY in the presence of the co-factor S-adenosylmethionine. The resulting cells can produce and site-specifically incorporate OMeY into proteins at much higher levels than cells exogenously fed OMeY. To understand the structural basis for the substrate selectivity of the transferase, we solved the X-ray crystal structures of the ligand-free and tyrosine-bound enzymes. Most importantly, we have extended this OMeY biosynthetic system to both mammalian cells and the zebrafish model to enhance the utility of genetic code expansion. The creation of autonomous eukaryotes using a 21st amino acid will make genetic code expansion technology more applicable to multicellular organisms, providing valuable vertebrate models for biological and biomedical research.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Animais , Eucariotos/genética , Células Eucarióticas/metabolismo , Código Genético , Mamíferos/genética , Metiltransferases/genética , Proteínas/química , S-Adenosilmetionina , Transferases/genética , Tirosina/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
15.
Adv Sci (Weinh) ; 8(19): e2005047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365742

RESUMO

Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.


Assuntos
Carcinogênese/metabolismo , Diferenciação Celular/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Fator 1 de Modelagem da Cromatina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Neuroblastoma/genética , Peixe-Zebra
16.
STAR Protoc ; 2(3): 100709, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34401776

RESUMO

Characterizing mRNA and protein expression with temporal and spatial resolution is a valuable component of nearly every developmental study. Here, we describe a protocol that combines in situ hybridization chain reaction (HCR) and immunofluorescence, allowing for the detection of mRNAs and proteins simultaneously, in zebrafish embryos and larvae. This protocol expands the flexibility of multiplexed HCR by coupling it with traditional immunofluorescence detection. For complete details on the use and execution of this protocol, please refer to Choi et al. (2010, 2016, 2018) and Howard et al. (2021).


Assuntos
Perfilação da Expressão Gênica/métodos , Hibridização in Situ Fluorescente/métodos , Hibridização In Situ/métodos , Animais , Embrião não Mamífero/metabolismo , Imunofluorescência , Expressão Gênica/genética , Hibridização Genética/genética , Larva/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , Peixe-Zebra/metabolismo
17.
Toxicol Rep ; 8: 303-314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552929

RESUMO

BACKGROUND: The number of plastic surgery procedures have been rising in the last few years. The morbi-mortality due to illegal use of biopolymers is a public health problem. One of the clinical consequences, foreign body modelling reaction, may be a precursor of ASIA (Autoimmune/Inflammatory disease induced by adjuvants) syndrome.The objective of this article is to present a case-series study of patients who developed ASIA syndrome following gluteal injection with biopolymers and emphasize the importance of toxic exposure in triggering autoimmune responses. A surgical technique used on some of the patients in the study is described. METHODS: A group of thirteen patients, diagnosed with foreign body modelling reaction, who developed ASIA syndrome confirmed by approved criteria was followed between May 2016 and May 2018. The "Butterfly Wings Technique," a new surgical procedure for patients who have medium to severe compromise, was used on five of them.A narrative literature review was done to look for subjects with ASIA syndrome and gluteal biopolymer infiltration. RESULTS: All the patients in the present case-series with foreign body modelling reaction developed ASIA syndrome. Some of them had a background of familial autoimmunity. Five of the patients were surgically treated and saw a clinical improvement after the extraction of the biopolymer with the proposed technique.The narrative literature review identified 7 articles related to the disease through the database search. CONCLUSIONS: We suggest that foreign body modelling reaction should be considered a precursor to ASIA syndrome. New research projects will be needed in the future to evaluate the factors that determine when ASIA syndrome is triggered in a patient with this reaction.

18.
Elife ; 102021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33591267

RESUMO

Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.


Assuntos
Linhagem da Célula , Crista Neural/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Larva/crescimento & desenvolvimento
19.
Front Cell Dev Biol ; 9: 803370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174164

RESUMO

Neural crest cells (NCCs) are a migratory, transient, and multipotent stem cell population essential to vertebrate embryonic development, contributing to numerous cell lineages in the adult organism. While great strides have been made in elucidating molecular and cellular events that drive NCC specification, comprehensive knowledge of the genetic factors that orchestrate NCC developmental programs is still far from complete. We discovered that elevated Hoxb5b levels promoted an expansion of zebrafish NCCs, which persisted throughout multiple stages of development. Correspondingly, elevated Hoxb5b also specifically expanded expression domains of the vagal NCC markers foxd3 and phox2bb. Increases in NCCs were most apparent after pulsed ectopic Hoxb5b expression at early developmental stages, rather than later during differentiation stages, as determined using a novel transgenic zebrafish line. The increase in vagal NCCs early in development led to supernumerary Phox2b+ enteric neural progenitors, while leaving many other NCC-derived tissues without an overt phenotype. Surprisingly, these NCC-derived enteric progenitors failed to expand properly into sufficient quantities of enterically fated neurons and stalled in the gut tissue. These results suggest that while Hoxb5b participates in vagal NCC development as a driver of progenitor expansion, the supernumerary, ectopically localized NCC fail to initiate expansion programs in timely fashion in the gut. All together, these data point to a model in which Hoxb5b regulates NCCs both in a tissue specific and temporally restricted manner.

20.
Gen Comp Endocrinol ; 305: 113642, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039406

RESUMO

Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.


Assuntos
Hormônio Liberador de Tireotropina , Tireotropina , Animais , Hormônio Liberador da Corticotropina , Hipotálamo , Glândula Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA