Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(6): e030453, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456449

RESUMO

BACKGROUND: Observational epidemiological studies have reported an association between childhood adiposity and altered cardiac morphology and function in later life. However, whether this is due to a direct consequence of being overweight during childhood has been difficult to establish, particularly as accounting for other measures of body composition throughout the lifecourse can be exceptionally challenging. METHODS AND RESULTS: In this study, we used human genetics to investigate this using a causal inference technique known as lifecourse Mendelian randomization. This approach allowed us to evaluate the effect of childhood body size on 11 measures of right heart and pulmonary circulation independent of other anthropometric traits at various stages in the lifecourse. We found strong evidence that childhood body size has a direct effect on an enlarged right heart structure in later life (eg, right ventricular end-diastolic volume: ß=0.24 [95% CI, 0.15-0.33]; P=3×10-7) independent of adulthood body size. In contrast, childhood body size effects on maximum ascending aorta diameter attenuated upon accounting for body size in adulthood, suggesting that this effect is likely attributed to individuals remaining overweight into later life. Effects of childhood body size on pulmonary artery traits and measures of right atrial function became weaker upon accounting for adulthood fat-free mass and childhood height, respectively. CONCLUSIONS: Our findings suggest that, although childhood body size has a long-term influence on an enlarged heart structure in adulthood, associations with the other structural components of the cardiovascular system and their function may be largely attributed to body composition at other stages in the lifecourse.


Assuntos
Adiposidade , Obesidade Infantil , Humanos , Adiposidade/genética , Sobrepeso/complicações , Análise da Randomização Mendeliana/métodos , Circulação Pulmonar , Índice de Massa Corporal , Obesidade Infantil/diagnóstico , Obesidade Infantil/epidemiologia , Obesidade Infantil/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
2.
iScience ; 26(12): 108356, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047089

RESUMO

Evaluating the long-term consequences of childhood lifestyle factors on asthma risk can be exceptionally challenging in epidemiology given that cases are typically diagnosed at various timepoints throughout the lifecourse. In this study, we used human genetic data to evaluate the effects of childhood and adulthood adiposity on risk of pediatric (n = 13,962 cases) and adult-onset asthma (n = 26,582 cases) with a common set of controls (n = 300,671) using a technique known as lifecourse Mendelian randomization. We found that childhood adiposity directly increases risk of pediatric asthma (OR = 1.20, 95% CI = 1.03-1.37, p = 0.03), but limited evidence that it has an effect on adult-onset asthma after accounting for adiposity during adulthood (OR = 1.05, 95% CI = 0.93-1.17, p = 0.39). Conversely, there was strong evidence that adulthood adiposity increases asthma risk in midlife (OR = 1.37, 95% CI = 1.28-1.46, P = 7 × 10-12). These findings suggest that childhood and adulthood adiposity are independent risk factors for asthma at each of their corresponding timepoints in the lifecourse.

3.
PLoS One ; 18(5): e0285258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141292

RESUMO

Cardiovascular disease (CVD) is influenced by genetic and environmental factors. Childhood maltreatment is associated with CVD and may modify genetic susceptibility to cardiovascular risk factors. We used genetic and phenotypic data from 100,833 White British UK Biobank participants (57% female; mean age = 55.9 years). We regressed nine cardiovascular risk factors/diseases (alcohol consumption, body mass index [BMI], low-density lipoprotein cholesterol, lifetime smoking behaviour, systolic blood pressure, atrial fibrillation, coronary heart disease, type 2 diabetes, and stroke) on their respective polygenic scores (PGS) and self-reported exposure to childhood maltreatment. Effect modification was tested on the additive and multiplicative scales by including a product term (PGS*maltreatment) in regression models. On the additive scale, childhood maltreatment accentuated the effect of genetic susceptibility to higher BMI (Peffect modification: 0.003). Individuals not exposed to childhood maltreatment had an increase in BMI of 0.12 SD (95% CI: 0.11, 0.13) per SD increase in BMI PGS, compared to 0.17 SD (95% CI: 0.14, 0.19) in those exposed to all types of childhood maltreatment. On the multiplicative scale, similar results were obtained for BMI though these did not withstand to Bonferroni correction. There was little evidence of effect modification by childhood maltreatment in relation to other outcomes, or of sex-specific effect modification. Our study suggests the effects of genetic susceptibility to a higher BMI may be moderately accentuated in individuals exposed to childhood maltreatment. However, gene*environment interactions are likely not a major contributor to the excess CVD burden experienced by childhood maltreatment victims.


Assuntos
Doenças Cardiovasculares , Maus-Tratos Infantis , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Criança , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 2/complicações , Predisposição Genética para Doença , Bancos de Espécimes Biológicos , Fatores de Risco , Reino Unido/epidemiologia
4.
Eur J Epidemiol ; 38(7): 765-769, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156976

RESUMO

Lifecourse Mendelian randomization is a causal inference technique which harnesses genetic variants with time-varying effects to develop insight into the influence of age-dependent lifestyle factors on disease risk. Here, we apply this approach to evaluate whether childhood body size has a direct consequence on 8 major disease endpoints by analysing parental history data from the UK Biobank study.Our findings suggest that, whilst childhood body size increases later risk of outcomes such as heart disease (odds ratio (OR) = 1.15, 95% CI = 1.07 to 1.23, P = 7.8 × 10- 5) and diabetes (OR = 1.43, 95% CI = 1.31 to 1.56, P = 9.4 × 10- 15) based on parental history data, these findings are likely attributed to a sustained influence of being overweight for many years over the lifecourse. Likewise, we found evidence that remaining overweight throughout the lifecourse increases risk of lung cancer, which was partially mediated by lifetime smoking index. In contrast, using parental history data provided evidence that being overweight in childhood may have a protective effect on risk of breast cancer (OR = 0.87, 95% CI = 0.78 to 0.97, P = 0.01), corroborating findings from observational studies and large-scale genetic consortia.Large-scale family disease history data can provide a complementary source of evidence for epidemiological studies to exploit, particularly given that they are likely more robust to sources of selection bias (e.g. survival bias) compared to conventional case control studies. Leveraging these data using approaches such as lifecourse Mendelian randomization can help elucidate additional layers of evidence to dissect age-dependent effects on disease risk.


Assuntos
Neoplasias da Mama , Sobrepeso , Humanos , Feminino , Fatores de Risco , Sobrepeso/epidemiologia , Sobrepeso/genética , Análise da Randomização Mendeliana/métodos , Fumar , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
5.
PLoS Biol ; 20(6): e3001656, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35679339

RESUMO

Children with obesity typically have larger left ventricular heart dimensions during adulthood. However, whether this is due to a persistent effect of adiposity extending into adulthood is challenging to disentangle due to confounding factors throughout the lifecourse. We conducted a multivariable mendelian randomization (MR) study to separate the independent effects of childhood and adult body size on 4 magnetic resonance imaging (MRI) measures of heart structure and function in the UK Biobank (UKB) study. Strong evidence of a genetically predicted effect of childhood body size on all measures of adulthood heart structure was identified, which remained robust upon accounting for adult body size using a multivariable MR framework (e.g., left ventricular end-diastolic volume (LVEDV), Beta = 0.33, 95% confidence interval (CI) = 0.23 to 0.43, P = 4.6 × 10-10). Sensitivity analyses did not suggest that other lifecourse measures of body composition were responsible for these effects. Conversely, evidence of a genetically predicted effect of childhood body size on various other MRI-based measures, such as fat percentage in the liver (Beta = 0.14, 95% CI = 0.05 to 0.23, P = 0.002) and pancreas (Beta = 0.21, 95% CI = 0.10 to 0.33, P = 3.9 × 10-4), attenuated upon accounting for adult body size. Our findings suggest that childhood body size has a long-term (and potentially immutable) influence on heart structure in later life. In contrast, effects of childhood body size on other measures of adulthood organ size and fat percentage evaluated in this study are likely explained by the long-term consequence of remaining overweight throughout the lifecourse.


Assuntos
Adiposidade , Análise da Randomização Mendeliana , Adiposidade/genética , Adulto , Índice de Massa Corporal , Tamanho Corporal/genética , Criança , Estudo de Associação Genômica Ampla , Humanos , Obesidade
6.
J Physiol ; 599(21): 4901-4924, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34505639

RESUMO

The late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesized that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon a glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In vivo, in neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 h later. Instead, at E17.5, fatty acid oxidation genes were downregulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was also downregulated in fetal hearts at E17.5, 24 h after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a translational sheep model of preterm birth, both GR and PGC-1α were downregulated in heart. These data suggest that endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by downregulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility. KEY POINTS: Glucocorticoids are steroid hormones that play a vital role in late pregnancy in maturing fetal organs, including the heart. In fetal cardiomyocytes in culture, glucocorticoids promote mitochondrial fatty acid oxidation, suggesting they facilitate the perinatal switch from carbohydrates to fatty acids as the predominant energy substrate. Administration of a synthetic glucocorticoid in late pregnancy in mice downregulates the glucocorticoid receptor and interferes with the normal increase in genes involved in fatty acid metabolism in the heart. In a sheep model of preterm birth, antenatal corticosteroids (synthetic glucocorticoid) downregulates the glucocorticoid receptor and the gene encoding PGC-1α, a master regulator of energy metabolism. These experiments suggest that administration of antenatal corticosteroids in anticipation of preterm delivery may interfere with fetal heart maturation by downregulating the ability to respond to glucocorticoids.


Assuntos
Glucocorticoides , Nascimento Prematuro , Animais , Dexametasona/farmacologia , Ácidos Graxos , Feminino , Coração Fetal , Glucocorticoides/farmacologia , Camundongos , Miócitos Cardíacos , Gravidez , Receptores de Glucocorticoides/genética , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...