Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568193

RESUMO

The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest. Thus, we demonstrate that FGF8 is a biased FGFR1c ligand, as compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1c transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.


Assuntos
Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Feminino , Gravidez , Humanos , Ligantes , Fosforilação , Viés , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
2.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200350

RESUMO

A considerable interest in cancer research is represented by the development of magnetic nanoparticles based on biofunctionalized polymers for controlled-release systems of hydrophobic chemotherapeutic drugs targeted only to the tumor sites, without affecting normal cells. The objective of the paper is to present the synthesis and in vitro evaluation of the nanocomposites that include a magnetic core able to direct the systems to the target, a polymeric surface shell that provides stabilization and multi-functionality, a chemotherapeutic agent, Paclitaxel (PTX), and a biotin tumor recognition layer. To our best knowledge, there are no studies concerning development of magnetic nanoparticles obtained by partial oxidation, based on biotinylated N-palmitoyl chitosan loaded with PTX. The structure, external morphology, size distribution, colloidal and magnetic properties analyses confirmed the formation of well-defined crystalline magnetite conjugates, with broad distribution, relatively high saturation magnetization and irregular shape. Even if the ability of the nanoparticles to release the drug in 72 h was demonstrated, further complex in vitro and in vivo studies will be performed in order to validate the magnetic nanoparticles as PTX delivery system.


Assuntos
Antineoplásicos Fitogênicos/química , Biotina/química , Quitosana/análogos & derivados , Nanopartículas de Magnetita/química , Paclitaxel/química , Linhagem Celular Tumoral , Quitosana/química , Coloides/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Células MCF-7 , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...