Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(8): 083907, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050043

RESUMO

Three concepts for the application of multi-extreme conditions under in situ neutron scattering are described here. The first concept is a neutron diamond anvil cell made from a non-magnetic alloy. It is shrunk in size to fit existing magnets and future magnet designs and is designed for best pressure stability upon cooling. This will allow for maximum pressures above 10 GPa to be applied simultaneously with (steady-state) high magnetic field and (ultra-)low temperature. Additionally, an implementation of miniature coils for neutron diamond cells is presented for pulsed-field applications. The second concept presents a set-up for laser-heating a neutron diamond cell using a defocused CO2 laser. Cell, anvil, and gasket stability will be achieved through stroboscopic measurements and maximum temperatures of 1500 K are anticipated at pressures to the megabar. The third concept presents a hybrid levitator to enable measurements of solids and liquids at temperatures in excess of 4000 K. This will be accomplished by a combination of bulk induction and surface laser heating and hyperbaric conditions to reduce evaporation rates. The potential for deployment of these multi-extreme environments within this first instrument suite of the Second Target Station is described with a special focus on VERDI, PIONEER, CENTAUR, and CHESS. Furthermore, considerations for deployment on future instruments, such as the one proposed as TITAN, are discussed. Overall, the development of these multi-extremes at the Second Target Station, but also beyond, will be highly advantageous for future experimentation and will give access to parameter space previously not possible for neutron scattering.

2.
J Phys Condens Matter ; 28(3): 035403, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26733233

RESUMO

At ambient conditions the anhydrous rare earth orthophosphates assume either the xenotime (zircon) or the monazite structure, with the latter favored for the heavier rare earths and by increasing pressure. Tb0.5Gd0.5PO4 assumes the xenotime structure at ambient conditions but is at the border between the xenotime and monazite structures. Here we show that, at high pressure, Tb0.5Gd0.5PO4 does not transform directly to monazite but through an intermediate anhydrite-type structure. Axial deformation of the unit cell near the anhydrite- to monazite-type transition indicates softening of the (c1133 + c1313) combined elastic moduli. Stress response of rare-earth orthophosphate ceramics can be affected by both formation of the anhydrite-type phase and the elastic softening in the vicinity of the monazite-phase. We report the first structural data for an anhydrite-type rare earth orthophosphate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...