Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pathogens ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38392849

RESUMO

Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is one of the leading causes of foodborne infections associated with broilers and laying hens. Portugal has had the lowest notification rates of salmonellosis in recent years, due to the vaccinations of layer and breeder flocks and strict compliance with biosecurity measures. However, data about the genetic diversity of S. Enteritidis in Portugal are scarce. In this study, 102 S. Enteritidis isolates selected from human (n = 63) and non-human sources (n = 39) were characterized by serotyping, antimicrobial susceptibility, and whole genome sequencing. The S. Enteritidis population was mainly resistant to fluoroquinolones, and a sole isolate showed resistance to extended-spectrum cephalosporins. ST11 was the most frequent sequence type, and three novel STs from human isolates (ST9236, ST4457, and ST9995) were assigned. Several Salmonella pathogenic islands (SPI) and Putative SPI were present in the genomes, namely SPI-1, 2, 3, 4, 5, 9, 10, 12, 13, and 14, C63PI, CS54_island, and 170 virulence genes were identified. The phylogenetic analysis revealed that strains from Portugal are genetically heterogeneous regarding sample type, collection date, and genetic content. This study increases the available data, essential to a better characterization of strains in a global context.

3.
BMC Genomics ; 25(1): 100, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262937

RESUMO

BACKGROUND: Ovine footrot caused by Dichelobacter nodosus (D. nodosus) is a contagious disease with serious economic and welfare impacts in sheep production systems worldwide. A better understanding of the host genetic architecture regarding footrot resistance/susceptibility is crucial to develop disease control strategies that efficiently reduce infection and its severity. A genome-wide association study was performed using a customized SNP array (47,779 SNPs in total) to identify genetic variants associated to footrot resistance/susceptibility in two Portuguese native breeds, i.e. Merino Branco and Merino Preto, and a population of crossbred animals. A cohort of 1375 sheep sampled across 17 flocks, located in the Alentejo region (southern Portugal), was included in the analyses. RESULTS: Phenotypes were scored from 0 (healthy) to 5 (severe footrot) based on visual inspection of feet lesions, following the Modified Egerton System. Using a linear mixed model approach, three SNPs located on chromosome 24 reached genome-wide significance after a Bonferroni correction (p < 0.05). Additionally, six genome-wide suggestive SNPs were identified each on chromosomes 2, 4, 7, 8, 9 and 15. The annotation and KEGG pathway analyses showed that these SNPs are located within regions of candidate genes such as the nonsense mediated mRNA decay associated PI3K related kinase (SMG1) (chromosome 24) and the RALY RNA binding protein like (RALYL) (chromosome 9), both involved in immunity, and the heparan sulfate proteoglycan 2 (HSPG2) (chromosome 2) and the Thrombospodin 1 (THBS1) (chromosome 7) implicated in tissue repair and wound healing processes. CONCLUSION: This is the first attempt to identify molecular markers associated with footrot in Portuguese Merino sheep. These findings provide relevant information on a likely genetic association underlying footrot resistance/susceptibility and the potential candidate genes affecting this trait. Genetic selection strategies assisted on the information obtained from this study could enhance Merino sheep-breeding programs, in combination with farm management strategies, for a more effective and sustainable long-term solution for footrot control.


Assuntos
Estudo de Associação Genômica Ampla , Carneiro Doméstico , Humanos , Ovinos , Animais , Portugal , Etnicidade , Cromossomos Humanos Par 7 , Predisposição Genética para Doença , Ribonucleoproteínas Nucleares Heterogêneas Grupo C
4.
Vet Microbiol ; 281: 109745, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37080086

RESUMO

In the Portuguese Alentejo region, Merino sheep breed is the most common breed, reared for the production of meat, dairy, and wool. Footrot is responsible for lameness, decreased animal welfare, and higher production losses, generating a negative economic impact. The disease is caused by Dichelobacter nodosus that interacts with the sheep foot microbiome, to date largely uncharacterized. In fact, Dichelobacter nodosus is not able to induce footrot by itself being required the presence of a second pathogen known as Fusobacterium necrophorum. To understand and characterize the footrot microbiome dynamics of different footrot lesion scores, a whole metagenome sequencing (WMGS) approach was used. Foot tissue samples were collected from 212 animals with different degrees of footrot lesion scores, ranging from 0 to 5. Distinct bacterial communities were associated with feet with different footrot scores identifying a total of 63 phyla and 504 families. As the severity of footrot infection increases the microorganisms' diversity decreases triggering a shift in the composition of the microbiome from a dominant gram-positive in mild stages to a dominant gram-negative in the severe stages. Several species previously associated with footrot and other polymicrobial diseases affecting the epidermis and provoking inflammatory responses such as Treponema spp., Staphylococcus spp., Streptococcus spp. and Campylobacter spp. were identified proliferating along with the lesions' severity. Although these bacteria are not able to initiate footrot, several evidences have been described supporting their association with the severity and incidence increase of footrot lesions caused by Dichelobacter nodosus and Fusobacterium necrophorum. Further investigation is required to establish the roles of particular taxa and identify which of them play a role in the disease process and which are opportunistic pathogens.


Assuntos
Dichelobacter nodosus , Pododermatite Necrótica dos Ovinos , Infecções por Bactérias Gram-Negativas , Microbiota , Doenças dos Ovinos , Animais , Ovinos , Doenças dos Ovinos/microbiologia , Pododermatite Necrótica dos Ovinos/microbiologia , Fusobacterium necrophorum , Dichelobacter nodosus/genética , Bactérias/genética , Carneiro Doméstico , Microbiota/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária
5.
Front Genet ; 14: 1109490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713074

RESUMO

As the effects of global warming become increasingly complex and difficult to manage, the conservation and sustainable use of locally adapted sheep breeds are gaining ground. Portuguese native sheep breeds are important reservoirs of genetic diversity, highly adapted to harsh environments and reared in low input production systems. Genomic data that would describe the breeds in detail and accelerate the selection of more resilient animals to be able to cope with climatic challenges are still lacking. Here, we sequenced the genomes of 37 animals from four Portuguese native sheep breeds (Campaniça, Bordaleira Serra da Estrela, Merino Branco and Merino Preto) and 19 crossbred sheep to make inferences on their genomic diversity and population structure. Mean genomic diversities were very similar across these breeds (.30 ≤ Ho ≤ .34; .30 ≤ He ≤ .35; 1.7 × 10-3 ≤ π ≤ 3.1 × 10-3) and the levels of inbreeding were negligible (.005 ≤ FIS ≤ .038). The Principal Components, Bayesian clustering and Treemix analyses split the Portuguese breeds in two main groups which are consistent with historical records: one comprising Campaniça and Serra da Estrela together with other European and transboundary dairy breeds; and another of the well-differentiated multi-purpose Merino and Merino-related breeds. Runs of homozygosity analyses yielded 1,690 ROH segments covering an average of 2.27 Gb across the genome in all individuals. The overall genome covered by ROH segments varied from 27,75 Mb in Serra da Estrela to 61,29 Mb in Campaniça. The phylogenetic analysis of sheep mitogenomes grouped the Portuguese native breeds within sub-haplogroup B1a along with two animals of the Akkaraman breed from Turkey. This result provides additional support to a direct influence of Southwest Asian sheep in local breeds from the Iberian Peninsula. Our study is a first step pertaining to the genomic characterization of Portuguese sheep breeds and the results emphasize the potential of genomic data as a valid tool to guide conservation efforts in locally adapted sheep breeds. In addition, the genomic data we generated can be used to identify markers for breed assignment and traceability of certified breed-products.

6.
Mol Biotechnol ; 65(3): 419-432, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35976558

RESUMO

An accurate profile of gene expression at a cellular level can contribute to a better understanding of biological processes and complexities involved in regulatory mechanism of woody plants. Laser microdissection is one technique that allows isolation of specific, target cells or tissue from a heterogeneous cell population. This technique entails microscopic visualization of the selected tissue and use a laser beam to separate the desired cells from surrounding tissue. Initial identification of these cells is made based on morphology and/or histological staining. Some works have been made in several tissues and plant models. However, there are few studies of laser microdissection application in woody species, particularly, lignified and suberized cells. Moreover, the presence of high level of suberin in cell walls can be a big challenge for the application of this approach. In our study it was developed a technique for tissue isolation, using laser microdissection of four different plant cell types (phellogen, lenticels, cortex and xylem) from woody tissues of cork oak (Quercus suber), followed by RNA extraction and RNA-Seq. We tested several methodologies regarding laser microdissection, cryostat equipments, fixation treatments, duration of single-cells collection and number of isolated cells by laser microdissection and RNA extraction procedures. A simple and efficient protocol for tissue isolation by laser microdissection and RNA purification was obtained, with a final method validation of RNA-Seq analysis. The optimized methodology combining RNA-Seq for expression analysis will contribute to elucidate the molecular pathways associated with different development processes of the xylem and phellem in oaks, including the lenticular channels formation.


Assuntos
Microdissecção , Quercus , RNA-Seq , Plantas/genética , Lasers , Quercus/genética , RNA de Plantas/genética
7.
DNA Res ; 28(2)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-33755103

RESUMO

Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species' unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.


Assuntos
Bivalves/genética , Genoma , Sequenciamento Completo do Genoma , Animais , Genômica , Sequenciamento de Nucleotídeos em Larga Escala
8.
BMC Plant Biol ; 18(1): 198, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223777

RESUMO

BACKGROUND: Gene activity is largely controlled by transcriptional regulation through the action of transcription factors and other regulators. QsMYB1 is a member of the R2R3-MYB transcription factor family related to secondary growth, and in particular, with the cork development process. In order to identify the putative gene targets of QsMYB1 across the cork oak genome we developed a ChIP-Seq strategy. RESULTS: Results provide direct evidence that QsMY1B targets genes encoding for enzymes involved in the lignin and suberin pathways as well as gene encoding for ABCG transporters and LTPs implicated in the transport of monomeric suberin units across the cellular membrane. These results highlight the role of QsMYB1 as a regulator of lignin and suberin biosynthesis, transport and assembly. CONCLUSION: To our knowledge, this work constitutes the first ChIP-Seq experiment performed in cork oak, a non-model plant species with a long-life cycle, and these results will contribute to deepen the knowledge about the molecular mechanisms of cork formation and differentiation.


Assuntos
Lignina/genética , Lipídeos/genética , Proteínas de Plantas/genética , Quercus/genética , Fatores de Transcrição/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Enzimas/genética , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Quercus/metabolismo , Sequências Reguladoras de Ácido Nucleico , Sementes/genética , Fatores de Transcrição/metabolismo
9.
Physiol Mol Biol Plants ; 24(4): 535-549, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30042611

RESUMO

Cork oak is the main cork-producing species worldwide, and plays a significant economic, ecological and social role in the Mediterranean countries, in particular in Portugal and Spain. The ability to produce cork is limited to a few species, hence it must involve specific regulation mechanisms that are unique to these species. However, to date, these mechanisms remain largely understudied, especially with approaches involving the use of high-throughput sequencing technology. In this study, the transcriptome of cork-producing and non-cork-producing Quercus cerris × suber hybrids was analyzed in order to elucidate the differences between the two groups of trees displaying contrasting phenotypes for cork production. The results revealed the presence of a significant number of genes exclusively associated with cork production, in the trees that developed cork. Moreover, several gene ontology subcategories, such as cell wall biogenesis, lipid metabolic processes, metal ion binding and apoplast/cell wall, were only detected in the trees with cork production. These results indicate the existence, at the transcriptome level, of mechanisms that seem to be unique and necessary for cork production, which is an advancement in our knowledge regarding the genetic regulation behind cork formation and production.

10.
Sci Data ; 5: 180069, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29786699

RESUMO

Cork oak (Quercus suber) is native to southwest Europe and northwest Africa where it plays a crucial environmental and economical role. To tackle the cork oak production and industrial challenges, advanced research is imperative but dependent on the availability of a sequenced genome. To address this, we produced the first draft version of the cork oak genome. We followed a de novo assembly strategy based on high-throughput sequence data, which generated a draft genome comprising 23,347 scaffolds and 953.3 Mb in size. A total of 79,752 genes and 83,814 transcripts were predicted, including 33,658 high-confidence genes. An InterPro signature assignment was detected for 69,218 transcripts, which represented 82.6% of the total. Validation studies demonstrated the genome assembly and annotation completeness and highlighted the usefulness of the draft genome for read mapping of high-throughput sequence data generated using different protocols. All data generated is available through the public databases where it was deposited, being therefore ready to use by the academic and industry communities working on cork oak and/or related species.


Assuntos
Genoma de Planta , Quercus/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA