Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 328: 111576, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36565935

RESUMO

Fiber growing inside the cotton bolls is a highly demandable product and its quality is key to the success of the textile industry. Despite the various efforts to improve cotton fiber staple length Pakistan has to import millions of bales to sustain its industrial needs. To improve cotton fiber quality Bacterial cellulose synthase (Bcs) genes (acsA, acsB) were expressed in a local cotton variety CEMB-00. In silico studies revealed a number of conserved domains both in the cotton-derived and bacterial cellulose synthases which are essential for the cellulose synthesis. Transformation efficiency of 1.27% was achieved by using Agrobacterium shoot apex cut method of transformation. The quantitative mRNA expression analysis of the Bcs genes in transgenic cotton fiber was found to be many folds higher during secondary cell wall synthesis stage (35 DPA) than the expression during elongation phase (10 DPA). Average fiber length of the transgenic cotton plant lines S-00-07, S-00-11, S-00-16 and S-00-23 was calculated to be 13.02% higher than that of the non-transgenic control plants. Likewise, the average fiber strength was found to be 20.92% higher with an enhanced cellulose content of 22.45%. The mutated indigenous cellulose synthase genes of cotton generated through application of CRISPR/Cas9 resulted in 6.03% and 12.10% decrease in fiber length and strength respectively. Furthermore, mature cotton fibers of transgenic cotton plants were found to have increased number of twists with smooth surface as compared to non-transgenic control when analyzed under scanning electron microscope. XRD analysis of cotton fibers revealed less cellulose crystallinity index in transgenic cotton fibers as compared to control fibers due to deposition of more amorphous cellulose in transgenic fibers as a result of Bcs gene expression. This study paved the way towards unraveling the fact that Bcs genes influence cellulose synthase activity and this enzyme helps in determining the fate of cotton fiber length and strength.


Assuntos
Celulose , Fibra de Algodão , Glucosiltransferases/genética , Gossypium/genética , Regulação da Expressão Gênica de Plantas
2.
PLoS One ; 15(3): e0230519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187234

RESUMO

Promoters are specified segments of DNA that lead to the initiation of transcription of a specific gene. The designing of a gene cassette for plant transformation is significantly dependent upon the specificity of a promoter. Constitutive Cauliflower mosaic virus promoter, CaMV35S, due to its developmental role, is the most commonly used promoter in plant transformation. While Gossypium hirsutum (Gh) being fiber-specific promoter (GhSCFP) specifically activates transcription in seed coat and fiber associated genes. The Expansin genes are renowned for their versatile roles in plant growth. The overexpression of Expansin genes has been reported to enhance fiber length and fineness. Thus, in this study, a local Cotton variety was transformed with Expansin (CpEXPA1) gene, in the form of two separate cassettes, each with a different promoter, named as 35SEXPA1 and FSEXPA1 expressed under CaMV35S and GhSCFP promoters respectively. Integration and Spatiotemporal relative expression of the transgene were studied in an advanced generation. GhSCFP bearing transgene expression was significantly higher in Cotton fiber than other plant parts. While transgene with CaMV35S promoter was found to be continually expressing in all tissues but the expression was lower in fiber than that expressed under GhSCFP. The temporal expression profile was quite interesting with a gradual increasing pattern of both constructs from 1DPA (days post anthesis) to 18DPA and decreased expression from 24 to 30 DPA. Besides the relative expression of promoters, fiber cellulose quantification and fluorescence intensity were also observed. The study significantly compared the two most commonly used promoters and it is deduced from the results that the GhSCFP promoter could be used more efficiently in fiber when compared with CaMV35S which being constitutive in nature preferred for expression in all parts of the plant.


Assuntos
Fibra de Algodão , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...