Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(3): 804-811, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36648322

RESUMO

Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cells.


Assuntos
Nanotubos , Paládio , Ligas , Paclitaxel , Catálise
2.
Colloids Surf B Biointerfaces ; 220: 112932, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272281

RESUMO

Fluorine-19 (19F) Magnetic Resonance Imaging (MRI) is an emergent imaging technique for molecular imaging and cell tracking. Lack of intrinsic 19F signals in tissues allows unambiguous in vivo detection of exogenous fluorinated probes, complementary to the anatomical and multiparametric information obtained by standard 1H-MRI. However, the intrinsic low sensitivity of MRI technique requires the need of designing increasingly effective fluorinated tracers. PERFECTA, with its 36 magnetically equivalent 19F atoms and a designed branched molecular structure, represents an excellent superfluorinated tracer. In this paper, we report the development of PERFECTA loaded PLGA NPs stabilized by different coatings as promising 19F-MRI probes. The results clearly show the optimal cellular uptake of the produced colloidally stable PERFECTA loaded PLGA NPs without impact on cells viability. Importantly, NPs stabilization with the anionic surfactant sodium cholate (NaC) clearly enhances NPs internalization within cells with respect to PVA-coated NPs. Moreover, the optimized NPs are characterized by shorter T1 relaxation times with respect to other PERFECTA formulations that would allow the increase of 19F-MRI sensitivity with fast imaging acquisitions.


Assuntos
Nanopartículas , Nanopartículas/química , Imageamento por Ressonância Magnética , Rastreamento de Células , Sobrevivência Celular , Estrutura Molecular
3.
Biomaterials ; 283: 121453, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35272224

RESUMO

Regional anesthesia is widely used in peripheral nerve block and in neuraxial anesthesia to reduce anesthetics systemic side effects and shorten recovery times. However, when applied as a single injection (e.g., peripheral nerve block) it is limited by the duration of its effect. Herein, we develop a thermoresponsive nanogel based on poly(oligoethylene glycol methacrylate) containing the long-lasting anesthetic bupivacaine, which can be externally activated by using near-infrared light due to the photothermal properties of hollow gold nanoparticles embedded in the nanogel which facilitate its phase transition, triggering drug release at a controlled temperature above body temperature. Bupivacaine in vitro release can be repeatedly triggered to achieve a controlled pulsatile release of the drug due to the reversible nature of the thermosensitive nanogel, achieving a spatio-temporal control of the release. In vivo sciatic nerve block demonstrates that whereas the administered dose of free bupivacaine produces sensory block and impaired motor function for 2 h, the equivalent bupivacaine dose included in the developed release system can significantly prolong its neurobehavioral anesthetic effect for over 6 h. This release system can also be reactivated multiple times by subsequent irradiation cycles without observing detrimental toxicity in the infiltrated tissues.


Assuntos
Anestesia por Condução , Nanopartículas Metálicas , Anestésicos Locais , Bupivacaína , Ouro/farmacologia , Nervos Periféricos , Nervo Isquiático
4.
Macromol Biosci ; 22(5): e2100528, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35258161

RESUMO

The synthesis of polymeric nanoparticles from a block copolymer based on poly(ethylene glycol) and a polymethacrylate containing the nucleobase analog 2,6-diacylaminopyridine is optimized by microfluidics to obtain homogeneous spherical micelles. Loading and delivery properties are studied using naproxen as a model. The incorporation of a Pd precursor in the polymer organic solution fed into the micromixer allows the preparation of Pd(II) precursor-polymer hybrid systems and the subsequent reduction with CO leads to the in situ synthesis of Pd nanosheets inside of the hydrophobic core of the polymeric micelles. This methodology is highly efficient to yield all polymeric nanoparticles loaded with Pd nanosheets as detected by electron microscopy and energy-dispersive X-ray spectroscopy. The cell viability of these Pd nanosheets-containing polymeric nanoparticles is evaluated using five cell lines, showing a high cytocompatibility at the tested concentrations without detrimental effects in cell membrane and nuclei. Furthermore, the use of these hybrid polymeric nanoparticles as photothermal transductors is evaluated using near infrared as irradiation source as well as its application in photothermal therapy using different cell lines demonstrating a high efficiency in all cell cultures.


Assuntos
Micelas , Microfluídica , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Polímeros/química , Polímeros/farmacologia
5.
Nanomaterials (Basel) ; 11(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685164

RESUMO

The development of new gene-editing technologies has fostered the need for efficient and safe vectors capable of encapsulating large nucleic acids. In this work we evaluate the synthesis of large-size plasmid-loaded PLGA nanoparticles by double emulsion (considering batch ultrasound and microfluidics-assisted methodologies) and magnetic stirring-based nanoprecipitation synthesis methods. For this purpose, we characterized the nanoparticles and compared the results between the different synthesis processes in terms of encapsulation efficiency, morphology, particle size, polydispersity, zeta potential and structural integrity of loaded pDNA. Our results demonstrate particular sensibility of large pDNA for shear and mechanical stress degradation during double emulsion, the nanoprecipitation method being the only one that preserved plasmid integrity. However, plasmid-loaded PLGA nanoparticles synthesized by nanoprecipitation did not show cell expression in vitro, possibly due to the slow release profile observed in our experimental conditions. Strong electrostatic interactions between the large plasmid and the cationic PLGA used for this synthesis may underlie this release kinetics. Overall, none of the methods evaluated satisfied all the requirements for an efficient non-viral vector when applied to large-size plasmid encapsulation. Further optimization or alternative synthesis methods are thus in current need to adapt PLGA nanoparticles as delivery vectors for gene editing therapeutic technologies.

6.
ACS Appl Mater Interfaces ; 13(15): 17220-17235, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33821601

RESUMO

The development of thermoresponsive nanogels loaded with nanocrystals of the local anesthetic bupivacaine nanocrystals (BNCs) for prolonged peripheral nerve pain relief is reported here. BNCs were prepared using the antisolvent precipitation method from the hydrophobic form of bupivacaine (bupivacaine free base). The as-prepared BNCs were used stand-alone or encapsulated in temperature-responsive poly(ethylene glycol) methyl ether methacrylate (OEGMA)-based nanogels, resulting in bupivacaine NC-loaded nanogels (BNC-nanogels) of monodisperse size. The synthesis protocol has rendered high drug loadings (i.e., 93.8 ± 1.5 and 84.8 ± 1.2 wt % for the NC and BNC-nanogels, respectively) and fast drug dissolution kinetics in the resulting composite material. In vivo tests demonstrated the efficacy of the formulation along with an extended duration of sciatic nerve block in murine models of more than 8 h with a formulation containing only 2 mg of the local anesthetic thanks to the thermoresponsive character of the polymer, which, at body temperature, becomes hydrophobic and acts as a diffusion barrier for the encapsulated drug nanocrystals. The hydrophobicity of the encapsulated bupivacaine free base probably facilitates its pass through cell membranes and also binds strongly to their hydrophobic lipid bilayer, thereby protecting molecules from diffusion to extracellular media and to the bloodstream, reducing their clearance. When using BNC-nanogels, the duration of the anesthetic blockage lasted twice as long as compared to the effect of just BNCs or a conventional bupivacaine hydrochloride solution both containing equivalent amounts of the free drug. Results of the in vivo tests showed enough sensory nerve block to potentially relieve pain, but still having mobility in the limb, which enables motor function when required. The BNC-nanogels presented minimal toxicity in the in vivo study due to their sustained drug release and excellent biocompatibility. The encapsulation of nano-sized crystals of bupivacaine provides a prolonged regional anesthesia with reduced toxicity, which could be advantageous in the management of chronic pain.


Assuntos
Anestésicos/administração & dosagem , Anestésicos/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Bloqueio Nervoso/métodos , Nervo Isquiático/efeitos dos fármacos , Animais , Preparações de Ação Retardada , Géis , Camundongos
7.
Nanomedicine (Lond) ; 15(12): 1189-1203, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370602

RESUMO

Aim: First, to compare in vitro minimum inhibitory concentrations (MIC) of free cloxacillin and cloxacillin-containing nanoparticles (NP) against methicillin-susceptible (MSSA) and resistant Staphylococcus aureus (MRSA) and second, to assess NP antimicrobial activity against intracellular S. aureus. Methods: Poly(d,l-lactide-co-glycolide) acid (PLGA)-NP were loaded with cloxacillin and physico-chemically characterized. MICs were determined for reference strains Newman-(MSSA) and USA300-(MRSA). Murine alveolar macrophages were infected, and bacterial intracellular survival was assessed after incubating with free-cloxacillin or PLGA-cloxacillin-NP. Results & conclusion: For both isolates, MICs for antibiotic-loaded-NP were lower than those obtained with free cloxacillin, indicating that the drug encapsulation improves antimicrobial activity. A sustained antibiotic release was demonstrated when using the PLGA-cloxacillin-NP. When considering the lowest concentrations, the use of drug-loaded NP enabled a higher reduction of intracellular bacterial load.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cloxacilina , Camundongos , Testes de Sensibilidade Microbiana , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus
8.
Nanoscale Adv ; 2(9): 3954-3962, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132804

RESUMO

High-resolution solution Nuclear Magnetic Resonance (NMR) spectroscopy has been used to gain insights into the mechanism of the formation of gold, platinum and gold-platinum alloyed nanoparticles using metal precursors and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as starting materials. THPC is widely used in nanochemistry as a reductant and stabilizer of nanoparticles, however the identity of the species responsible for each role is unknown. The multinuclear study of the reaction media by NMR spectroscopy allowed us to elucidate the structure of all the compounds that participate in the transformation from the metal salt precursor to the reduced metal that forms the nanoparticle, thus clarifying the controversy found in the literature regarding the formation of THPC-based compounds. The progress of the reaction was monitored from the initial moments of the synthesis to the end of the reaction and after long periods of time. Insights into the dual role of THPC were gained, identifying methanol and hydrogen as the actual reducing agents, and tris(hydroxymethyl)phosphine oxide (THPO) as the real stabilizing agent. Finally, the different stabilities of gold and platinum nanoparticles can be attributed to the different catalytic activities of the metals.

9.
J Control Release ; 314: 162-176, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31644937

RESUMO

Many long-acting extended drug release systems can provide controlled or sustained release of therapeutic payloads. In the majority of those systems drug release cannot be stopped once it has started because they operate autonomously regardless of the evolution of the treatment and/or the patient´s needs. However, in several pathologies such as diabetes, hormonal disorders, pain management, etc. a pulsatile drug release is required to adjust the dose of drug release to the specific needs in a spatio-temporal manner. Additionally, in other pathologies such as cancer or antimicrobial therapy the release of the drug with spatio-temporal control to prevent unwanted side effects represents an unmet need. With this aim reversible stimuli-responsive nanomaterials with an on-off switching ability have been developed in order to provide a spatio-temporal control of the drug released. Those systems can be activated in response to exogenous (light, magnetic field, electrical fields, etc.) or endogenous triggers (pH, enzyme-substrate complex formation, protein-cell binding, etc.) thanks to the use of reversible phase-transition materials. In this review we compile in vitro and preclinical results in which those materials have been successfully used. The types of stimuli used to trigger drug release as well as the different nanomaterials used are reviewed in order to provide a general overview of the field. We anticipate that further studies in this field will be expanded towards the development of multimodal hybrid systems which combine therapy and imaging while reporting the evolution of the treatment in real time.


Assuntos
Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos/métodos , Nanoestruturas , Animais , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Transição de Fase
10.
Nanomedicine (Lond) ; 14(6): 707-726, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30734643

RESUMO

AIM: Production of Matryoshka-type gastroresistant microparticles containing antibiotic-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) against Mycobacterium tuberculosis. MATERIALS & METHODS: The emulsification and evaporation methods were followed for the synthesis of PLGA-NPs and methacrylic acid-ethyl acrylate-based coatings to protect rifampicin from degradation under simulated gastric conditions. RESULTS & CONCLUSION: The inner antibiotic-loaded NPs here reported can be released under simulated intestinal conditions whereas their coating protects them from degradation under simulated gastric conditions. The encapsulation does not hinder the antituberculosis action of the encapsulated antibiotic rifampicin. A sustained antibiotic release could be obtained when using the drug-loaded encapsulated NPs. Compared with the administration of the free drug, a more effective elimination of M. tuberculosis was observed when applying the NPs against infected macrophages. The antibiotic-loaded PLGA-NPs were also able to cross an in vitro model of intestinal barrier.


Assuntos
Antibacterianos/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antibacterianos/administração & dosagem , Antituberculosos/administração & dosagem , Transporte Biológico , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Microesferas , Tamanho da Partícula , Preparações Farmacêuticas/química , Rifampina/química , Rifampina/farmacologia , Estômago , Propriedades de Superfície
11.
Int J Nanomedicine ; 11: 3397-416, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524896

RESUMO

By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification-evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates.


Assuntos
Emulsões/química , Nanopartículas/química , Análise Numérica Assistida por Computador , Simulação por Computador , Ciclosporina/farmacologia , Hidrodinâmica , Ácido Láctico/química , Microfluídica , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
12.
Nanoscale ; 7(22): 10152-61, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25985914

RESUMO

In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...